GENERAL ORDER MULTIVARIATE PADE APPROXIMANTS FOR PSEUDO-MULTIVARIATE FUNCTIONS. II
被引:2
|
作者:
Zhou, Ping
论文数: 0引用数: 0
h-index: 0
机构:
St Francis Xavier Univ, Dept Math Stat & Comp Sci, Antigonish, NS B2G 2W5, CanadaSt Francis Xavier Univ, Dept Math Stat & Comp Sci, Antigonish, NS B2G 2W5, Canada
Zhou, Ping
[1
]
Cuyt, Annie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, BelgiumSt Francis Xavier Univ, Dept Math Stat & Comp Sci, Antigonish, NS B2G 2W5, Canada
Cuyt, Annie
[2
]
Tan, Jieqing
论文数: 0引用数: 0
h-index: 0
机构:
Hefei Univ Technol, Inst Appl Math, Hefei 230009, Peoples R ChinaSt Francis Xavier Univ, Dept Math Stat & Comp Sci, Antigonish, NS B2G 2W5, Canada
Tan, Jieqing
[3
]
机构:
[1] St Francis Xavier Univ, Dept Math Stat & Comp Sci, Antigonish, NS B2G 2W5, Canada
Explicit formulas for general order multivariate Pade approximants of pseudo-multivariate functions are constructed on specific index sets. Examples include the multivariate forms of the exponential function E((x) under bar) = Sigma(infinity)(ji,j2,...,jm=0) x(1)(j1)x(2)(j2) ... x(m)(jm)/(j(1) + j(2) +...+ j(m))!' the logarithm function L((x) under bar) = Sigma(j1+j2+...+jm >= 1) x(1)(j1)x(2)(j2) ... x(m)(jm)/j(1) + j(2) +...+ j(m), the Lauricella function F(D)((m)) (a,1,...,1;c;x(1),...,x(m)) = Sigma(infinity)(j1,j2,...,jm=0) (a)(j1+...+jm)/(c)(j1+...+jm) x(1)(j1)...x(m)(jm), and many more. We prove that the constructed approximants inherit the normality and consistency properties of their univariate relatives. These properties do not hold in general for multivariate Pade approximants. A truncation error upperbound is also given.
机构:
Univ Sci & Tech Lille Flandres Artois, Lab Paul Painleve, UMR 8524, CNRS,UFR Math Pures & Appl, F-59655 Villeneuve Dascq, FranceUniv Sci & Tech Lille Flandres Artois, Lab Paul Painleve, UMR 8524, CNRS,UFR Math Pures & Appl, F-59655 Villeneuve Dascq, France