GENERAL ORDER MULTIVARIATE PADE APPROXIMANTS FOR PSEUDO-MULTIVARIATE FUNCTIONS. II

被引:2
|
作者
Zhou, Ping [1 ]
Cuyt, Annie [2 ]
Tan, Jieqing [3 ]
机构
[1] St Francis Xavier Univ, Dept Math Stat & Comp Sci, Antigonish, NS B2G 2W5, Canada
[2] Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium
[3] Hefei Univ Technol, Inst Appl Math, Hefei 230009, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Multivariate Pade approximants; pseudo-multivariate functions;
D O I
10.1090/S0025-5718-09-02226-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Explicit formulas for general order multivariate Pade approximants of pseudo-multivariate functions are constructed on specific index sets. Examples include the multivariate forms of the exponential function E((x) under bar) = Sigma(infinity)(ji,j2,...,jm=0) x(1)(j1)x(2)(j2) ... x(m)(jm)/(j(1) + j(2) +...+ j(m))!' the logarithm function L((x) under bar) = Sigma(j1+j2+...+jm >= 1) x(1)(j1)x(2)(j2) ... x(m)(jm)/j(1) + j(2) +...+ j(m), the Lauricella function F(D)((m)) (a,1,...,1;c;x(1),...,x(m)) = Sigma(infinity)(j1,j2,...,jm=0) (a)(j1+...+jm)/(c)(j1+...+jm) x(1)(j1)...x(m)(jm), and many more. We prove that the constructed approximants inherit the normality and consistency properties of their univariate relatives. These properties do not hold in general for multivariate Pade approximants. A truncation error upperbound is also given.
引用
收藏
页码:2137 / 2155
页数:19
相关论文
共 50 条