SAR image classification using adaptive neighborhood-based convolutional neural network

被引:15
|
作者
Zhang, Anjun
Yang, Xuezhi [1 ]
Jia, Lu
Ai, Jiaqiu
Dong, Zhangyu
机构
[1] Hefei Univ Technol, Sch Comp & Informat, Hefei, Anhui, Peoples R China
关键词
Deep learning; convolutional neural network; synthetic aperture radar image classification; adaptive neighborhood; bilateral distance-based weighting; SPECTRAL-SPATIAL CLASSIFICATION; URBAN AREAS; MULTIFREQUENCY; MACHINES;
D O I
10.1080/22797254.2019.1579616
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The convolutional neural network (CNN)-based pixel-wise synthetic aperture radar (SAR) data classification does not take fully use the spatial neighborhood information due to the fact that the impact of neighborhood pixels is not taken into consideration. The flaw of CNN-based classification method may lead to misclassification under some conditions. In this paper, we propose a novel adaptive neighborhood-based convolutional neural network (AN-CNN) for the single polarimetric synthetic aperture radar data classification. In the convolution layer, the neighborhood pixels are adaptively weighted based on their bilateral distance (spatial and feature distance) to the central pixel. In this way, different pixels have different impact on the classification result of the central pixel. The spatial distance-based weighting can reduce the misclassifications in the homogenous regions which are caused by speckle noise and the feature distance-based weighting is beneficial for the classification in the boundary regions. As a result, the misclassification is obviously reduced by the proposed AN-CNN which has a new cost function. Experimental results on simulated and real SAR data show that our proposed AN-CNN can notably improve the classification accuracy in both boundary regions and homogeneous regions compared with conventional CNN in different scenes especially when limited training samples are explored.
引用
下载
收藏
页码:178 / 193
页数:16
相关论文
共 50 条
  • [31] Pathology Image Classification Using Convolutional Neural Network
    Li, Qunxian
    2015 2ND INTERNATIONAL CONFERENCE ON EDUCATION AND EDUCATION RESEARCH (EER 2015), PT 5, 2015, 9 : 331 - 335
  • [32] Advertisement Image Classification Using Convolutional Neural Network
    An Tien Vo
    Hai Son Tran
    Thai Hoang Le
    2017 9TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2017), 2017, : 197 - 202
  • [33] Image Classification using small Convolutional Neural Network
    Tripathi, Shyava
    Kumar, Rishi
    2019 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2019), 2019, : 483 - 487
  • [34] Gastrointestinal Image Classification based on Convolutional Neural Network
    Wang, Shuo
    Gao, Pengfei
    Peng, Hui
    2021 8TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS RESEARCH AND APPLICATIONS, ICBRA 2021, 2021, : 42 - 48
  • [35] Modified Convolutional Neural Network based on Adaptive Patch Extraction for Hyperspectral Image Classification
    Hamouda, Maissa
    Ettabaa, Karim Saheb
    Bouhlel, Med Salim
    2018 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2018,
  • [36] Convolutional Neural Network Based Chart Image Classification
    Amara, Jihen
    Kaur, Pawandeep
    Owonibi, Michael
    Bouaziz, Bassem
    25. INTERNATIONAL CONFERENCE IN CENTRAL EUROPE ON COMPUTER GRAPHICS, VISUALIZATION AND COMPUTER VISION (WSCG 2017), 2017, 2701 : 83 - 88
  • [37] A method of image classification based on convolutional neural network
    Dong, Zhe
    Jiang, Mingyang
    Pei, Zhili
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2018, 124 : 47 - 48
  • [38] Image Classification Based on the Boost Convolutional Neural Network
    Lee, Shin-Jye
    Chen, Tonglin
    Yu, Lun
    Lai, Chin-Hui
    IEEE ACCESS, 2018, 6 : 12755 - 12768
  • [39] CT image classification based on convolutional neural network
    Zhang, Yuezhong
    Wang, Shi
    Zhao, Honghua
    Guo, Zhenhua
    Sun, Dianmin
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (14): : 8191 - 8200
  • [40] Pneumonia image classification based on convolutional neural network
    Xiong, Feng
    He, Di
    Liu, Yujie
    Qi, Meijie
    Zhang, Zhoufeng
    Liu, Lixin
    TWELFTH INTERNATIONAL CONFERENCE ON INFORMATION OPTICS AND PHOTONICS (CIOP 2021), 2021, 12057