Robustness margin for piecewise affine explicit control law

被引:0
|
作者
Koduri, Rajesh [1 ]
Rodriguez-Ayerbe, Pedro [1 ]
Olaru, Sorin [1 ]
机构
[1] Paris Saclay Univ, L2S, CentraleSupelec, CNRS,UPS, F-91192 Gif Sur Yvette, France
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Classical robustness margin i.e., gain margin and phase margin, considers the gain variation and phase variation of the model for which the stability of the closed loop is preserved. In this paper, an attempt to find the same kind of margin for a piecewise affine (PWA) controller is done. This type of controller obtained for example via explicit model predictive control (MPC) is defined over a convex region of the state space X. Starting from the invariance property of the closed loop obtained involving a discrete dynamic model and PWA controller in a convex region of the state space, we calculate the two robustness margin preserving this invariance property. The first one will be denoted as gain margin corresponding to the variation of the gain of the model guaranteeing the invariance. The second one, denoted, the robustness margin against first order neglected dynamics will correspond to the slowest first order neglected dynamic allowed in the system preserving the invariance property.
引用
收藏
页码:2327 / 2332
页数:6
相关论文
共 50 条
  • [31] Robust region elimination for piecewise affine control laws
    Maddalena, Emilio Tanowe
    Harrop Galvao, Roberto Kawakami
    Magalhaes Afonso, Rubens Junqueira
    [J]. AUTOMATICA, 2019, 99 : 333 - 337
  • [32] Reconfiguration in hierarchical control of piecewise-affine systems
    Pasternak, T
    [J]. HYBRID SYSTEMS: COMPUTATION AND CONTROL, 2002, 2289 : 364 - 377
  • [33] Control to Facet by Piecewise-Affine Output Feedback
    Habets, Luc C. G. J. M.
    Collins, Pieter J.
    van Schuppen, Jan H.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (11) : 2831 - 2843
  • [34] Trajectory tracking control of bimodal piecewise affine systems
    Sakurama, K
    Sugie, T
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2005, 78 (16) : 1314 - 1326
  • [35] Piecewise-affine control of a three DOF helicopter
    Yue, Wei
    Rodrigues, Luis
    Gordon, Brandon
    [J]. 2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 3924 - +
  • [36] Active Steering Control Based on Piecewise Affine Regions
    Scalzi, Stefano
    Benine-Neto, Andre
    Netto, Mariana
    Pasillas-Lepine, William
    Mammar, Said
    [J]. 2010 AMERICAN CONTROL CONFERENCE, 2010, : 5362 - 5367
  • [37] Trajectory tracking control of bimodal piecewise affine systems
    Sakurama, K
    Sugie, T
    Nakano, K
    [J]. ACC: Proceedings of the 2005 American Control Conference, Vols 1-7, 2005, : 2799 - 2804
  • [38] Asynchronous Quantized Control of Piecewise-Affine Systems
    Ning, Zepeng
    Feng, Gang
    Yin, Xunyuan
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (01) : 503 - 510
  • [39] Configuration selection for reconfigurable control of piecewise affine systems
    Tabatabaeipour, S. M.
    Gholami, M.
    Bak, T.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2015, 88 (06) : 1310 - 1323
  • [40] Robust Model Predictive Control for Piecewise Affine Systems
    Yuanyuan Zou
    Shaoyuan Li
    [J]. Circuits, Systems & Signal Processing, 2007, 26 : 393 - 406