The Fujita phenomenon in exterior domains under dynamical boundary conditions

被引:4
|
作者
Rault, Jean-Francois [1 ]
机构
[1] Univ Littoral Cote dOpale, CNRS, LMPA Joseph Liouville, FR 2956, F-62228 Calais, France
关键词
nonlinear parabolic problems; dynamical boundary conditions; global solutions; REACTION-DIFFUSION EQUATIONS; BLOW-UP;
D O I
10.3233/ASY-2009-0954
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Fujita phenomenon for nonlinear parabolic problems partial derivative(t)u = Delta u + u(p) in an exterior domain of R(N) under dissipative dynamical boundary conditions sigma partial derivative(t)u + partial derivative(v)u = 0 is investigated in the superlinear case. As in the case of Dirichlet boundary conditions (see Trans. Amer. Math. Soc. 316 (1989), 595-622 and Israel J. Math. 98 (1997), 141-156), it turns out that there exists a critical exponent p = 1 + 2/N such that blow-up of positive solutions always occurs for subcritical exponents, whereas in the supercritical case global existence can occur for small non-negative initial data.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条