The Fujita phenomenon in exterior domains under dynamical boundary conditions

被引:4
|
作者
Rault, Jean-Francois [1 ]
机构
[1] Univ Littoral Cote dOpale, CNRS, LMPA Joseph Liouville, FR 2956, F-62228 Calais, France
关键词
nonlinear parabolic problems; dynamical boundary conditions; global solutions; REACTION-DIFFUSION EQUATIONS; BLOW-UP;
D O I
10.3233/ASY-2009-0954
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Fujita phenomenon for nonlinear parabolic problems partial derivative(t)u = Delta u + u(p) in an exterior domain of R(N) under dissipative dynamical boundary conditions sigma partial derivative(t)u + partial derivative(v)u = 0 is investigated in the superlinear case. As in the case of Dirichlet boundary conditions (see Trans. Amer. Math. Soc. 316 (1989), 595-622 and Israel J. Math. 98 (1997), 141-156), it turns out that there exists a critical exponent p = 1 + 2/N such that blow-up of positive solutions always occurs for subcritical exponents, whereas in the supercritical case global existence can occur for small non-negative initial data.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] The Fujita phenomenon in exterior domains under the Robin boundary conditions
    Rault, Jean-Francois
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (19-20) : 1059 - 1061
  • [2] An Exterior Parabolic Differential Inequality Under Semilinear Dynamical Boundary Conditions
    Alqahtani, Awatif
    Jleli, Mohamed
    Kirane, Mokhtar
    Samet, Bessem
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (02) : 639 - 660
  • [3] An Exterior Parabolic Differential Inequality Under Semilinear Dynamical Boundary Conditions
    Awatif Alqahtani
    Mohamed Jleli
    Mokhtar Kirane
    Bessem Samet
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 639 - 660
  • [4] The critical Fujita number for a semilinear heat equation in exterior domains with homogeneous Neumann boundary values
    Levine, HA
    Zhang, QS
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2000, 130 : 591 - 602
  • [5] Zeta functions with Dirichlet and Neumann boundary conditions for exterior domains
    Eckmann, JP
    Pillet, CA
    HELVETICA PHYSICA ACTA, 1997, 70 (1-2): : 44 - 65
  • [6] Stationary Navier–Stokes equations under inhomogeneous boundary conditions in 3D exterior domains
    Matthias Hieber
    Hideo Kozono
    Anton Seyfert
    Senjo Shimizu
    Taku Yanagisawa
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [7] QUASILINEAR DIFFERENTIAL EQUATIONS IN EXTERIOR DOMAINS WITH NONLINEAR BOUNDARY CONDITIONS AND APPLICATION
    Motreanu, Dumitru
    Tarfulea, Nicolae
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2009,
  • [8] Stationary Navier-Stokes equations under inhomogeneous boundary conditions in 3D exterior domains
    Hieber, Matthias
    Kozono, Hideo
    Seyfert, Anton
    Shimizu, Senjo
    Yanagisawa, Taku
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (05)
  • [9] Critical criteria of Fujita type for a system of inhomogeneous wave inequalities in exterior domains
    Jleli, Mohamed
    Samet, Bessem
    Ye, Dong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (06) : 3035 - 3056
  • [10] Heat Kernel Estimates for Schrodinger Operators on Exterior Domains with Robin Boundary Conditions
    Kovarik, Hynek
    Mugnolo, Delio
    POTENTIAL ANALYSIS, 2018, 48 (02) : 159 - 180