Impact of gas diffusion layer mechanics on PEM fuel cell performance

被引:24
|
作者
Irmscher, P. [1 ]
Qui, D. [2 ]
Janssen, H. [1 ]
Lehnert, W. [1 ,3 ]
Stolten, D. [1 ,4 ]
机构
[1] Forschungszentrum Julich, Inst Energy & Climate Res Electrochem Proc Engn I, Julich, Germany
[2] Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
[3] Rhein Westfal TH Aachen, Modeling Electrochem Proc Engn, Aachen, Germany
[4] Rhein Westfal TH Aachen, Chair Fuel Cells, Aachen, Germany
关键词
Gas Diffusion layer; Mechanics; Performance; Clamping pressure; CLAMPING PRESSURE DISTRIBUTION; ELECTRICAL CONTACT RESISTANCE; MICRO-POROUS LAYER; MICROPOROUS LAYER; COMPRESSIVE STRESS; DIMENSIONAL CHANGE; WATER MANAGEMENT; TRANSPORT; MICROSTRUCTURE; CARBON;
D O I
10.1016/j.ijhydene.2019.07.047
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
During the clamping of a Fuel Cell, the porosity of the gas diffusion layer (GDL) and the contact resistances are continuously reduced. In this work, the optimum clamping pressure is determined for three commonly used GDLs. For this purpose, polarization curves are recorded for contact pressures of 0.1-2.7 N/mm(2). For the SGL 29BCE material, the optimum contact pressure range is very narrow, while the Toray TGP-H 060 material performs best in a wider range; the Freudenberg H2315 material is the most robust type, and works best from 0.6 N/mm(2) until the maximum (2.7 N/mm(2)). For the understanding of the mechanical effects on the GDL structure, scanning electron microscopy and nano- computer tomography images are made. In addition, permeability measurements are carried out. To transfer the results, the local pressure distributions are recorded, and their minima and maxima are considered. Ultimately, this information allows the transfer of the results to other flow field geometries. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:23406 / 23415
页数:10
相关论文
共 50 条
  • [21] Numerical investigation of multi-layered porosity in the gas diffusion layer on the performance of a PEM fuel cell
    Kanchan, Brajesh Kumar
    Randive, Pitambar
    Pati, Sukumar
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (41) : 21836 - 21847
  • [22] The effects of compression and gas diffusion layers on the performance of a PEM fuel cell
    Lee, WK
    Ho, CH
    Van Zee, JW
    Murthy, M
    [J]. JOURNAL OF POWER SOURCES, 1999, 84 (01) : 45 - 51
  • [23] Optimal and Robust Design of the PEM Fuel Cell Cathode Gas Diffusion Layer
    Zhang, Zhuqian
    Wang, Xia
    Li, Jing
    Mourelatos, Zissimos P.
    Jia, Li
    [J]. SAE INTERNATIONAL JOURNAL OF MATERIALS AND MANUFACTURING, 2009, 1 (01) : 618 - 630
  • [24] Investigation of the Effective Transport Properties of Gas Diffusion Layer on PEM fuel cell
    Wang, Yulin
    Wang, Shixue
    Yang, Wenzhe
    Wang, Guozhuo
    [J]. INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 2323 - 2328
  • [25] Effect of operational parameters on transport and performance of a PEM fuel cell with the best protrusive gas diffusion layer arrangement
    Wu, Horng-Wen
    Shih, Gin-Jang
    Chen, Yi-Bin
    [J]. APPLIED ENERGY, 2018, 220 : 47 - 58
  • [26] Effect of liquid water distribution in gas diffusion media with and without microporous layer on PEM fuel cell performance
    Deevanhxay, Phengxay
    Sasabe, Takashi
    Tsushima, Shohji
    Hirai, Shuichiro
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2013, 34 : 239 - 241
  • [27] Analytical Impedance of Oxygen Transport in the Channel and Gas Diffusion Layer of a PEM Fuel Cell
    Kulikovsky, Andrei
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (11)
  • [28] Numerical investigation of effective thermal conductivity of gas diffusion layer of the PEM fuel cell
    Lee, S. H.
    Nam, J. H.
    Kim, C. J.
    Kim, H. M.
    [J]. NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2024, 85 (09) : 1356 - 1378
  • [29] Analysis of coupled electron and mass transport in the gas diffusion layer of a PEM fuel cell
    Sui, P. C.
    Djilali, N.
    [J]. JOURNAL OF POWER SOURCES, 2006, 161 (01) : 294 - 300
  • [30] Measurements of proton conductivity in the active layer of PEM fuel cell gas diffusion electrodes
    Boyer, C
    Gamburzev, S
    Velev, O
    Srinivasan, S
    Appleby, AJ
    [J]. ELECTROCHIMICA ACTA, 1998, 43 (24) : 3703 - 3709