New determinantal identities on Stirling numbers

被引:0
|
作者
Chandramouli, BS
机构
关键词
determinantal identities; unsigned Stirling numbers of first kind; Stirling numbers of second kind;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Stirling numbers of first kind and Stirling numbers of second kind denoted by s(n,k) and S(n,k) respectively arise in a variety of combinatorial contexts. There are several algebraic and combinatorial relationship between them. Here we state and prove four new identities concerning the determinants of matrices whose entries are unsigned Stirling numbers of first kind and Stirling numbers of second kind. We also observe an interrelationship between them based on our identities.
引用
收藏
页码:251 / 263
页数:13
相关论文
共 50 条
  • [31] Some Identities Involving Stirling Numbers Arising from Matrix Decompositions
    Bahrami-Taghanaki, M.
    Moghaddamfar, A. R.
    Salehy, Nima
    Salehy, Navid
    JOURNAL OF INTEGER SEQUENCES, 2024, 27 (01)
  • [32] Some Identities on λ-Analogues of r-Stirling Numbers of the First Kind
    Kim, Taekyun
    Kim, Dae San
    FILOMAT, 2020, 34 (02) : 451 - 460
  • [33] Some Identities and Congruences for q-Stirling Numbers of the Second Kind
    Diarra, Bertin
    Maiga, Hamadoun
    Mounkoro, Tongobe
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2022, 14 (02) : 85 - 102
  • [34] Identities associated with generalized Stirling type numbers and Eulerian type polynomials
    Simsek, Yilmaz
    Simsek, Y. (ysimsek@akdeniz.edu.tr), 1600, Association for Scientific Research, P.O. Box 83, Manisa, 45040, Turkey (18): : 251 - 263
  • [35] Some identities on λ-analogues of r-Stirling numbers of the second kind
    Kim, Dae San
    Kim, Hye Kyung
    Kim, Taekyun
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (03): : 1054 - 1066
  • [36] A q-analog of Schläfli and Gould identities on Stirling numbers
    Matthieu Josuat-Vergès
    The Ramanujan Journal, 2018, 46 : 483 - 507
  • [37] DETERMINANTAL IDENTITIES REVISITED
    BRUALDI, RA
    SCHNEIDER, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 59 (JUN) : 203 - 207
  • [38] Boson operator ordering identities from generalized Stirling and Eulerian numbers
    Maier, Robert S.
    ADVANCES IN APPLIED MATHEMATICS, 2024, 156
  • [39] New definitions of the generalized Stirling numbers
    Michael Maltenfort
    Aequationes mathematicae, 2020, 94 : 169 - 200
  • [40] New definitions of the generalized Stirling numbers
    Maltenfort, Michael
    AEQUATIONES MATHEMATICAE, 2020, 94 (01) : 169 - 200