This paper describes a combined boundary element and finite element model for the solution of velocity-vorticity formulation of the Navier-Stokes equations in thee dimensions. In the velocity-vorticity formulation of the Navier-Stokes equations, the Poisson type velocity equations are solved using the boundary element method (BEM) and the vorticity transport equations are solved using the finite element method (FEM) and both are combined to form an iterative scheme. The vorticity boundary conditions for the solution of vorticity transport equations are exactly obtained directly from the BEM solution of the velocity Poisson equations. Here the results of medium Reynolds number of up to 1000, in a typical cubic cavity flow are presented and compared with other numerical models. The combined BEM-FEM model are generally in fairly close agreement with the results of other numerical models, even for a coarse mesh. (C) 2000 Elsevier Science Ltd. All rights reserved.
机构:
Univ Illinois, Mech Sci & Engn, Urbana, IL 61801 USAUniv Illinois, Mech Sci & Engn, Urbana, IL 61801 USA
Tekinalp, Arman
Bhosale, Yashraj
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Mech Sci & Engn, Urbana, IL 61801 USAUniv Illinois, Mech Sci & Engn, Urbana, IL 61801 USA
Bhosale, Yashraj
Cui, Songyuan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Mech Sci & Engn, Urbana, IL 61801 USAUniv Illinois, Mech Sci & Engn, Urbana, IL 61801 USA
Cui, Songyuan
Chan, Fan Kiat
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Mech Sci & Engn, Urbana, IL 61801 USAUniv Illinois, Mech Sci & Engn, Urbana, IL 61801 USA
Chan, Fan Kiat
Gazzola, Mattia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Mech Sci & Engn, Urbana, IL 61801 USA
Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL 61801 USA
Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USAUniv Illinois, Mech Sci & Engn, Urbana, IL 61801 USA