A nonoscillation theorem for Emden-Fowler equations

被引:11
|
作者
Wong, JSW [1 ]
机构
[1] City Univ Hong Kong, Kowloon Tong, Hong Kong, Peoples R China
关键词
ordinary differential equation; nonlinear; second order; oscillation; asymptotic behavior;
D O I
10.1016/S0022-247X(02)00357-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the second order Emden-Fowler equation (E) y"+a(x)\y\(gamma-1) y=0, gamma > 0 where a(x) is positive and absolutely continuous on (0, infinity). Let psi(x) = x((gamma+3)/2+delta) where 3 is any positive number. Theorem. Let gamma not equal 1. If psi(x) satisfies. (a) lim(x-->infinity)psi(x) k > 0 and (b) f(infinity) \ psi'(x) \ dx <infinity, then Eq. (E) is nonoscillatory. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:746 / 754
页数:9
相关论文
共 50 条
  • [21] WKB Method for Nonlinear Equations of Emden-Fowler Type
    Stepin, S. A.
    Shafarevich, A., I
    [J]. DOKLADY MATHEMATICS, 2022, 105 (01) : 39 - 44
  • [22] Oscillatory Properties of Solutions of Generalized Emden-Fowler Equations
    Koplatadze, R.
    [J]. DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATI ONS, 2013, 47 : 45 - 62
  • [23] NONOSCILLATORY SOLUTIONS FOR EMDEN-FOWLER TYPE DIFFERENCE EQUATIONS
    Cecchi, M.
    Dosla, Z.
    Marini, M.
    Vrkoc, I.
    [J]. DIFFERENCE EQUATIONS, SPECIAL FUNCTIONS AND ORTHOGONAL POLYNOMIALS, 2007, : 159 - +
  • [24] A NEW DYNAMICAL APPROACH OF EMDEN-FOWLER EQUATIONS AND SYSTEMS
    Bidaut-Veron, Marie Francoise
    Gacomini, Hector
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2010, 15 (11-12) : 1033 - 1082
  • [25] SOLUTION OF GENERALIZED EMDEN-FOWLER EQUATIONS WITH 2 SYMMETRIES
    MELLIN, CM
    MAHOMED, FM
    LEACH, PGL
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1994, 29 (04) : 529 - 538
  • [26] EMDEN-FOWLER EQUATIONS WITH INFINITELY EXTENDIBLE UNBOUNDED SOLUTIONS
    IZOBOV, NA
    [J]. MATHEMATICAL NOTES, 1984, 35 (1-2) : 99 - 105
  • [27] QUALITATIVE STUDY OF SOLUTIONS FOR EMDEN-FOWLER DIFFERENTIAL EQUATIONS
    LEFRANC, M
    MAWHIN, J
    [J]. BULLETIN DE LA CLASSE DES SCIENCES ACADEMIE ROYALE DE BELGIQUE, 1969, 55 (08): : 763 - &
  • [28] Quasi-Lie schemes and Emden-Fowler equations
    Carinena, Jose F.
    Leach, P. G. L.
    de Lucas, Javier
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
  • [29] On the asymptotic estimates of solutions of Emden-Fowler type equations
    V. S. Samovol
    [J]. Mathematical Notes, 2015, 97 : 100 - 110
  • [30] On the asymptotic estimates of solutions of Emden-Fowler type equations
    Samovol, V. S.
    [J]. MATHEMATICAL NOTES, 2015, 97 (1-2) : 100 - 110