We study a general class of quasilinear non-uniformly elliptic pdes in divergence form with linear growth in the gradient. We examine the notions of BV and viscosity solutions and derive for such generalized solutions various a priori pointwise and integral estimates, including a Harnack inequality. In particular we prove that viscosity solutions are unique (on strictly convex domains), are contained in the space BVloc and are C-1,C-alpha almost everywhere.
机构:
Univ Bologna, Dipartimento Matemat, Piazza di Porta S Donato 5, I-40126 Bologna, ItalyUniv Salerno, Dipartimento Ingn Civile, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
Ferrari, Fausto
Vitolo, Antonio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Salerno, Dipartimento Ingn Civile, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
INdAM GNAMPA, Ist Nazl Alta Matemat, Varese, ItalyUniv Salerno, Dipartimento Ingn Civile, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
机构:
Baku State Univ, Inst Appl Math, AZ-1148 Baku, Azerbaijan
Dumlupinar Univ, Dept Math, TR-43100 Kutahya, Turkey
RUDN Univ, SM Nikolskii Inst Math, Moscow 117198, RussiaBaku State Univ, Inst Appl Math, AZ-1148 Baku, Azerbaijan
Guliyev, V. S.
Omarova, M. N.
论文数: 0引用数: 0
h-index: 0
机构:
Baku State Univ, AZ-1148 Baku, Azerbaijan
NAS Azerbaijan, Inst Math & Mech, AZ-1141 Baku, AzerbaijanBaku State Univ, Inst Appl Math, AZ-1148 Baku, Azerbaijan
Omarova, M. N.
Ragusa, M. A.
论文数: 0引用数: 0
h-index: 0
机构:
RUDN Univ, SM Nikolskii Inst Math, Moscow 117198, Russia
Univ Catania, Dipartimento Matemat & Informat, Catania, ItalyBaku State Univ, Inst Appl Math, AZ-1148 Baku, Azerbaijan