Dual topological characterization of non-Hermitian Floquet phases

被引:35
|
作者
Zhou, Longwen [1 ]
Gu, Yongjian [1 ]
Gong, Jiangbin [2 ]
机构
[1] Ocean Univ China, Coll Informat Sci & Engn, Dept Phys, Qingdao 266100, Peoples R China
[2] Natl Univ Singapore, Dept Phys, Singapore 117543, Singapore
基金
新加坡国家研究基金会; 中国博士后科学基金; 中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevB.103.L041404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Non-Hermiticity is expected to add far more physical features to the already rich Floquet topological phases of matter. Nevertheless, a systematic approach to characterize non-Hermitian Floquet topological matter is still lacking. In this work we introduce a dual scheme to characterize the topology of non-Hermitian Floquet systems in momentum space and in real space using a piecewise quenched nonreciprocal Su-Schrieffer-Heeger model for our case studies. Under the periodic boundary condition, topological phases are characterized by a pair of experimentally accessible winding numbers that make jumps between integers and half integers. Under the open boundary condition, a Floquet version of the so-called open boundary winding number is found to be integers and can predict the number of pairs of zero and pi Floquet edge modes coexisting with the non-Hermitian skin effect. Our results indicate that a dual characterization of non-Hermitian Floquet topological matter is necessary and also feasible because the formidable task of constructing the celebrated generalized Brillouin zone for non-Hermitian Floquet systems with multiple hopping length scales can be avoided. This work hence paves a way for further studies of non-Hermitian physics in nonequilibrium systems.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Cutting off the non-Hermitian boundary from an anomalous Floquet topological insulator
    Hoeckendorf, Bastian
    Alvermann, Andreas
    Fehske, Holger
    [J]. EPL, 2020, 131 (03)
  • [42] Non-Hermitian Floquet Phases with Even-Integer Topological Invariants in a Periodically Quenched Two-Leg Ladder
    Zhou, Longwen
    [J]. ENTROPY, 2020, 22 (07)
  • [43] Non-Hermitian topological magnonics
    Yu, Tao
    Zou, Ji
    Zeng, Bowen
    Rao, J. W.
    Xia, Ke
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2024, 1062 : 1 - 86
  • [44] Non-Hermitian topological photonics
    Nasari, Hadiseh
    Pyrialakos, Georgios G.
    Christodoulides, Demetrios N.
    Khajavikhan, Mercedeh
    [J]. OPTICAL MATERIALS EXPRESS, 2023, 13 (04) : 870 - 885
  • [45] Non-Hermitian topological ohmmeter
    Koenye, Viktor
    Ochkan, Kyrylo
    Chyzhykova, Anastasiia
    Budich, Jan Carl
    van den Brink, Jeroen
    Fulga, Ion Cosma
    Dufouleur, Joseph
    [J]. PHYSICAL REVIEW APPLIED, 2024, 22 (03):
  • [46] Non-Hermitian Topological Sensors
    Budich, Jan Carl
    Bergholtz, Emil J.
    [J]. PHYSICAL REVIEW LETTERS, 2020, 125 (18)
  • [47] Non-Hermitian Topological Photonics
    Zhen, Bo
    Zhou, Hengyun
    Peng, Chao
    Yoon, Yoseob
    Hsu, Chia Wei
    Nelson, Keith A.
    Shen, Huitao
    Fu, Liang
    Joannopoulos, John D.
    Soljacic, Marin
    [J]. 2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [48] Different phases in non-Hermitian topological semiconductor stripe laser arrays
    Chen, Jingxuan
    Fu, Ting
    Wang, Yufei
    Wang, Xueyou
    Dai, Yingqiu
    Qi, Aiyi
    Wang, Mingjin
    Zheng, Wanhua
    [J]. OPTICS EXPRESS, 2022, 30 (22) : 39244 - 39257
  • [49] Non-Hermitian Topology in Hermitian Topological Matter
    Hamanaka, Shu
    Yoshida, Tsuneya
    Kawabata, Kohei
    Kawabata, Kohei
    [J]. Physical Review Letters, 2024, 133 (26)
  • [50] Topological phases and edge states in a non-Hermitian trimerized optical lattice
    Jin, L.
    [J]. PHYSICAL REVIEW A, 2017, 96 (03)