Structure of the plasma-wall interaction in an oblique magnetic field

被引:67
|
作者
Ahedo, E
机构
[1] E.T.S.I. Aeronáuticos, Depto. de Fundamentos Matematicos, Universidad Politécnica
关键词
D O I
10.1063/1.872606
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
h'The influence of the magnetic field strength B and angle of incidence psi on the one-dimensional (1-D) structure of a weakly collisional plasma near a charged wall is investigated. The models of Chodura [Phys. Fluids 25, 1628 (1982)] and Riemann [Phys. Plasmas 1, 552 (1994)] are recovered as particular cases: intermediate-B and weak-B cases, respectively, of the model presented here, and are compared with a third, strong-B case, where the space-charge sheath is partially magnetized. A triple structure comprising (collisional) presheath, Chodura layer, and sheath, exists only for the intermediate-B case. For weaker and stronger ranges of B, the Chodura layer disappears immersed into the presheath and the sheath, respectively, recovering a classical double-structure. In the Chodura model the importance of the collisional presheath to characterize completely the perturbation region is discussed. For the weak-B case: results for the whole range of angles of incidence are presented and compared; for grazing incidence and a near-collisionless plasma, an approximate analytical solution is derived; and, the asymptotic convergence to the triple-structure is shown. For the strong-B case, the analysis includes: (i) an involved derivation of the local behavior around the entrance point to the sheath, and (ii), for a certain range of psi to cross, with a regular solution, an internal singular point of the sheath equations. The similarities between the entrance conditions to the different plasma regions are pointed out. (C) 1997 American Institute of Physics.
引用
收藏
页码:4419 / 4430
页数:12
相关论文
共 50 条
  • [21] PLASMA-WALL INTERACTION IN WISCONSIN TOKAPOLE
    GROEBNER, RJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1071 - 1071
  • [22] Plasma-wall interaction of advanced materials
    Coenen, J. W.
    Berger, M.
    Demkowicz, M. J.
    Matveev, D.
    Manhard, A.
    Neu, R.
    Riesch, J.
    Unterberg, B.
    Wirtz, M.
    Linsmeier, Ch.
    NUCLEAR MATERIALS AND ENERGY, 2017, 12 : 307 - 312
  • [23] PLASMA-WALL INTERACTION FACILITIES IN KOREA
    Chung, K-S
    Woo, H-J
    Cho, S-G
    Choi, Y-S
    Han, S-H
    Hong, B-G
    Hong, S-H
    Kim, H-S
    Noh, S-J
    Lho, T.
    Park, S-J
    You, H-J
    FUSION SCIENCE AND TECHNOLOGY, 2013, 63 (1T) : 16 - 20
  • [24] Plasma-wall interaction issues in ITER
    Janeschitz, G
    JOURNAL OF NUCLEAR MATERIALS, 2001, 290 : 1 - 11
  • [25] Thermal instability caused by plasma-wall interaction
    E. D. Marenkov
    S. I. Krasheninnikov
    A. A. Pisarev
    I. V. Tsvetkov
    Plasma Physics Reports, 2012, 38 : 352 - 358
  • [26] Laser-produced plasma-wall interaction
    Renner, O.
    Liska, R.
    Rosmej, F. B.
    LASER AND PARTICLE BEAMS, 2009, 27 (04) : 725 - 731
  • [27] Plasma-wall interaction: Status and data needs
    Samm, U
    NUCLEAR FUSION RESEARCH: UNDERSTANDING PLASMA-SURFACE INTERACTIONS, 2005, 78 : 3 - 28
  • [28] ITER research plan of plasma-wall interaction
    Shimada, M.
    Pitts, R.
    Loarte, A.
    Campbell, D. J.
    Sugihara, M.
    Mukhovatov, V.
    Kukushkin, A.
    Chuyanov, V.
    JOURNAL OF NUCLEAR MATERIALS, 2009, 390-91 : 282 - 285
  • [29] HYDROGEN AND HELIUM PUMPING BY PLASMA-WALL INTERACTION
    KERST, RA
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1982, 20 (04): : 1267 - 1270
  • [30] Thermal instability caused by plasma-wall interaction
    Marenkov, E. D.
    Krasheninnikov, S. I.
    Pisarev, A. A.
    Tsvetkov, I. V.
    PLASMA PHYSICS REPORTS, 2012, 38 (04) : 352 - 358