Sparse representation based on stacked kernel for target detection in hyperspectral imagery

被引:4
|
作者
Zhao, Chunhui [1 ]
Li, Wei [1 ]
Li, Xiaohui [1 ]
Qi, Bin [1 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Peoples R China
来源
OPTIK | 2015年 / 126卷 / 24期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Hyperspectral remote sensing; Target detection; Stacked kernel; Simultaneous orthogonal matching pursuit; CLASSIFICATION; SUPPORT; ALGORITHMS;
D O I
10.1016/j.ijleo.2015.09.022
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Conventional sparse representation gets poor performance in nonlinear information processing for target detection in hyperspectral images (HSI). In this paper, a novel sparse representation based on stacked kernel is proposed for target detection in HSI. This method uses several different kinds of stacked kernel function to project nonlinear information contained by the hypercube into a new feature space in which the data becomes linear separable to promote high level of detection accuracy. Then, the algorithm, simultaneous orthogonal matching pursuit (SOMP), is used to solve the convex relaxation techniques. Experiment results demonstrate that the sparse representation method with stacked kernel for target detection further increases the detection accuracy. (C) 2015 Elsevier GmbH. All rights reserved.
引用
收藏
页码:5633 / 5640
页数:8
相关论文
共 50 条
  • [21] HYPERSPECTRAL TARGET DETECTION BASED ON A SPATIALLY REGULARIZED SPARSE REPRESENTATION
    Yang, Xiaoli
    Chen, Jie
    Zhang, Yi
    [J]. 2018 10TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2018,
  • [22] SPARSE REPRESENTATION FOR HYPERSPECTRAL IMAGE TARGET DETECTION
    Yan, Yongshuai
    He, Binbin
    [J]. 2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING (WHISPERS), 2012,
  • [23] Hyperspectral image target detection algorithm based on StOMP sparse representation
    Zhao, Chunhui
    Jing, Xiaohao
    Li, Wei
    [J]. Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2015, 36 (07): : 992 - 996
  • [24] Improved sparse representation using adaptive spatial support for effective target detection in hyperspectral imagery
    Zhao, Chunhui
    Li, Xiaohui
    Ren, Jinchang
    Marshall, Stephen
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (24) : 8669 - 8684
  • [25] Sparse-representation-based automatic target detection in infrared imagery
    Zhao, Jufeng
    Chen, Jinwei
    Chen, Yueting
    Feng, Huajun
    Xu, Zhihai
    Li, Qi
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2013, 56 : 85 - 92
  • [26] A KERNEL BACKGROUND PURIFICATION BASED ANOMALY TARGET DETECTION ALGORITHM FOR HYPERSPECTRAL IMAGERY
    Zhang, Yan
    Xu, Mingming
    Fan, Yanguo
    Zhang, Yuxiang
    Dong, Yanni
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 441 - 444
  • [27] WEIGHTED HIERARCHICAL SPARSE REPRESENTATION FOR HYPERSPECTRAL TARGET DETECTION
    Wei, Chenlu
    Jiang, Zhiyu
    Yuan, Yuan
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2428 - 2431
  • [28] Combined sparse and collaborative representation for hyperspectral target detection
    Li, Wei
    Du, Qian
    Zhang, Bing
    [J]. PATTERN RECOGNITION, 2015, 48 (12) : 3904 - 3916
  • [29] Target Dictionary Construction-Based Sparse Representation Hyperspectral Target Detection Methods
    Zhu, Dehui
    Du, Bo
    Zhang, Liangpei
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (04) : 1254 - 1264
  • [30] Adaptive Iterated Shrinkage Thresholding-Based Lp-Norm Sparse Representation for Hyperspectral Imagery Target Detection
    Zhao, Xiaobin
    Li, Wei
    Zhang, Mengmeng
    Tao, Ran
    Ma, Pengge
    [J]. REMOTE SENSING, 2020, 12 (23) : 1 - 20