Sparse representation based on stacked kernel for target detection in hyperspectral imagery

被引:4
|
作者
Zhao, Chunhui [1 ]
Li, Wei [1 ]
Li, Xiaohui [1 ]
Qi, Bin [1 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Peoples R China
来源
OPTIK | 2015年 / 126卷 / 24期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Hyperspectral remote sensing; Target detection; Stacked kernel; Simultaneous orthogonal matching pursuit; CLASSIFICATION; SUPPORT; ALGORITHMS;
D O I
10.1016/j.ijleo.2015.09.022
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Conventional sparse representation gets poor performance in nonlinear information processing for target detection in hyperspectral images (HSI). In this paper, a novel sparse representation based on stacked kernel is proposed for target detection in HSI. This method uses several different kinds of stacked kernel function to project nonlinear information contained by the hypercube into a new feature space in which the data becomes linear separable to promote high level of detection accuracy. Then, the algorithm, simultaneous orthogonal matching pursuit (SOMP), is used to solve the convex relaxation techniques. Experiment results demonstrate that the sparse representation method with stacked kernel for target detection further increases the detection accuracy. (C) 2015 Elsevier GmbH. All rights reserved.
引用
收藏
页码:5633 / 5640
页数:8
相关论文
共 50 条
  • [1] Kernel Sparse Representation for Hyperspectral Target Detection
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVIII, 2012, 8390
  • [2] KERNEL SPARSE REPRESENTATION FOR HYPERSPECTRAL TARGET DETECTION
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 7484 - 7487
  • [3] Sparse Representation for Target Detection in Hyperspectral Imagery
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (03) : 629 - 640
  • [4] Kernel Sparse Representation for Anomaly Detection in Hyperspectral Imagery
    Xiong, Jie
    Ling, Qiang
    Lin, Zaiping
    Wu, Jing
    [J]. ICAIP 2018: 2018 THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN IMAGE PROCESSING, 2018, : 106 - 110
  • [5] Sparse Representation with Constraints for Target Detection in Hyperspectral Imagery
    Ling, Qiang
    Sheng, Weidong
    Lin, Zaiping
    Li, Miao
    An, Wei
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [6] Superpixel sparse representation for target detection in hyperspectral imagery
    Dong, Chunhua
    Naghedolfeizi, Masoud
    Aberra, Dawit
    Qiu, Hao
    Zeng, Xiangyan
    [J]. COMPRESSIVE SENSING VI: FROM DIVERSE MODALITIES TO BIG DATA ANALYTICS, 2017, 10211
  • [7] A Novel Method of Hyperspectral Imagery Target Detection Based on Sparse Representation
    Zhao, Chunhui
    Meng, Meiling
    [J]. 2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2017, : 1942 - 1946
  • [8] Sparse Representation Based Band Selection for Hyperspectral Imagery Target Detection
    Tang, Yi-Dong
    Huang, Shu-Cai
    Xue, Ai-Jun
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2017, 45 (10): : 2368 - 2374
  • [9] JOINT SPARSE AND COLLABORATIVE REPRESENTATION FOR TARGET DETECTION IN HYPERSPECTRAL IMAGERY
    Li, Wei
    Du, Qian
    [J]. 2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [10] MATCHED SUBSPACE DETECTOR BASED ON SPARSE REPRESENTATION FOR TARGET DETECTION IN HYPERSPECTRAL IMAGERY
    Gu, Yanfeng
    Zheng, He
    Gao, Guoming
    [J]. 2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,