THE FRACTIONAL QUATERNION FOURIER NUMBER TRANSFORM

被引:0
|
作者
da Silva, Luiz C. [1 ]
de Oliveira Neto, Jose R. [2 ]
Lima, Juliano B. [1 ]
机构
[1] Univ Fed Pernambuco, Dept Elect & Syst, Recife, PE, Brazil
[2] Univ Fed Pernambuco, Dept Mech Engn, Recife, PE, Brazil
关键词
Fourier number transform; quaternion Fourier transform; color image encryption; THEORETIC TRANSFORMS; ENCRYPTION;
D O I
10.1109/icassp40776.2020.9054714
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we define a fractional version of the quaternion Fourier number transform (QFNT). With this purpose, we first study the eigenstructure of the QFNT; this is used to obtain the eigendecomposition of the corresponding transform matrix, from which the fractional QFNT can be computed. A multiple parameter version of this transform is then employed to perform encryption of color images. Preliminary results suggest that the proposed scheme is secure, while allowing to deal with all color channels in a holistic manner and take into account possible interactions between them.
引用
下载
收藏
页码:5610 / 5614
页数:5
相关论文
共 50 条
  • [21] Miyachi’s Theorem for the Quaternion Fourier Transform
    Youssef El Haoui
    Said Fahlaoui
    Circuits, Systems, and Signal Processing, 2020, 39 : 2193 - 2206
  • [22] Eigenstructure and fractionalization of the quaternion discrete Fourier transform
    Ribeiro, Guilherme B.
    Lima, Juliano B.
    OPTIK, 2020, 208
  • [23] Directional Uncertainty Principle for Quaternion Fourier Transform
    Hitzer, Eckhard M. S.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2010, 20 (02) : 271 - 284
  • [24] Beurling’s theorem for the quaternion Fourier transform
    Youssef El Haoui
    Said Fahlaoui
    Journal of Pseudo-Differential Operators and Applications, 2020, 11 : 187 - 199
  • [25] Beurling's theorem for the quaternion Fourier transform
    El Haoui, Youssef
    Fahlaoui, Said
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2020, 11 (01) : 187 - 199
  • [26] Miyachi's Theorem for the Quaternion Fourier Transform
    El Haoui, Youssef
    Fahlaoui, Said
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2020, 39 (04) : 2193 - 2206
  • [28] Quaternion Fourier Transform and Generalized Lipschitz Classes
    El Mehdi Loualid
    Abdelghani Elgargati
    Radouan Daher
    Advances in Applied Clifford Algebras, 2021, 31
  • [29] Quaternion Fourier Transform and Generalized Lipschitz Classes
    Loualid, El Mehdi
    Elgargati, Abdelghani
    Daher, Radouan
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2021, 31 (01)
  • [30] The Quaternion Domain Fourier Transform and its Properties
    Eckhard Hitzer
    Advances in Applied Clifford Algebras, 2016, 26 : 969 - 984