Matter fields near quantum critical point in (2+1)-dimensional U(1) gauge theory

被引:6
|
作者
Liu, Guo-Zhu [1 ]
Li, Wei [1 ]
Cheng, Geng [1 ]
机构
[1] Univ Sci & Technol China, Dept Modern Phys, Anhua 230026, Peoples R China
基金
美国国家科学基金会;
关键词
Gauge theory; Chiral symmetry breaking; Confinement; SPIN-LIQUID; BEHAVIOR; FERMIONS; STATE; LIMIT; MODEL;
D O I
10.1016/j.nuclphysb.2009.09.004
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study chiral phase transition and confinement of matter fields in (2 + 1)-dimensional U(1) gauge theory of massless Dirac fermions and scalar bosons. The vanishing scalar boson mass, r = 0, defines a quantum critical point between the Higgs phase and the Coulomb phase. We consider only the critical point r = 0 and the Coulomb phase with r > 0. The Dirac fermion acquires a dynamical mass when its flavor is less than certain critical value N-f(c), which depends quantitatively on the flavor N-b and the scalar boson mass r. When N-f < N-f(c), the matter fields carrying internal gauge charge are all confined if r not equal 0 but are deconfined at the quantum critical point r = 0. The system has distinct low-energy elementary excitations at the critical point r = 0 and in the Coulomb phase with r not equal 0. We calculate the specific heat and susceptibility of the system at r = 0 and r not equal 0, which can help to detect the quantum critical point and to judge whether dynamical fermion mass generation takes place. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:303 / 319
页数:17
相关论文
共 50 条
  • [11] Higgs amplitude mode in the vicinity of a (2+1)-dimensional quantum critical point
    Rancon, A.
    Dupuis, N.
    [J]. PHYSICAL REVIEW B, 2014, 89 (18):
  • [12] MULTIPARAMETER VARIATIONAL CALCULATIONS FOR THE (2+1)-DIMENSIONAL U(1) LATTICE GAUGE-THEORY AND THE XY MODEL
    HEYS, DW
    STUMP, DR
    [J]. NUCLEAR PHYSICS B, 1987, 285 (01) : 13 - 28
  • [13] POINCARE GAUGE-THEORY OF (2+1)-DIMENSIONAL GRAVITY
    KAWAI, T
    [J]. PHYSICAL REVIEW D, 1994, 49 (06): : 2862 - 2871
  • [14] ISO(2, 1) GAUGE-FIELDS AND (2+1)-DIMENSIONAL SPACE-TIME
    AMANO, K
    HIGUCHI, S
    [J]. PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1992, (110): : 151 - 157
  • [15] A (2+1)-DIMENSIONAL MODEL FOR QUANTUM THEORY OF GRAVITY
    LEUTWYLER, H
    [J]. NUOVO CIMENTO A, 1966, 42 (01): : 159 - +
  • [16] On the spectrum and string tension of U(1) lattice gauge theory in 2+1 dimensions
    Athenodorou, Andreas
    Teper, Michael
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)
  • [17] Analytic calculation of the mass gap in U(1)2+1 lattice gauge theory
    McIntosh, JAL
    Hollenberg, LCL
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 : 257 - 259
  • [18] Calculation of the vacuum wave function in 2+1 dimensional U(1) gauge theory by using the improved lattice Hamiltonian
    Jiang, JQ
    Luo, XQ
    Guo, SH
    Liu, JM
    [J]. HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 1999, 23 (12): : 1152 - 1157
  • [19] (2+1)-dimensional compact Lifshitz theory, tensor gauge theory, and fractons
    Gorantla, Pranay
    Lam, Ho Tat
    Seiberg, Nathan
    Shao, Shu-Heng
    [J]. PHYSICAL REVIEW B, 2023, 108 (07)
  • [20] Critical behavior of (2+1)-dimensional QED: 1/Nf corrections in the Landau gauge
    Kotikov, A. V.
    Shilin, V. I.
    Teber, S.
    [J]. PHYSICAL REVIEW D, 2016, 94 (05)