Evolutionary programming with only using exponential mutation

被引:4
|
作者
Narihisa, H. [1 ]
Kohmoto, K. [1 ]
Taniguchi, T.
Ohta, M.
Katayama, K.
机构
[1] Klinki Univ, Sch Biol Oriented Sci & Technol, Dept Intelligence Syst, Wakayama 6496493, Japan
关键词
D O I
10.1109/CEC.2006.1688358
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The individual of population in standard self-adaptive evolutionary programming (EP) is composed as a pair of objective variable and strategy parameter. Therefore, EP must evolve both objective variable and strategy parameter. In standard evolutionary programming (CEP), these evolutions are implemented by mutation based on only Gaussian random number. On the other hand, fast evolutionary programming (FEP) uses Cauchy random number as evolution of objective variable and exponential evolutionary programming (EEP) uses exponential random number as evolution of objective variable. However, all of these EP (CEP, FEP and EEP) commonly uses Gaussian random number as evolution of strategy parameter. In this paper, we propose new EEP algorithm (NEP) which uses double exponential random number for both evolution of objective variable and strategy parameter. The experimental results show that this new algorithm (NEP) outperforms the existing CEP and FEP.
引用
收藏
页码:552 / +
页数:3
相关论文
共 50 条
  • [41] Multicriteria fuzzy control using evolutionary programming
    Kim, JH
    Kim, KC
    INFORMATION SCIENCES, 1997, 103 (1-4) : 71 - 86
  • [42] PID controller tuning using evolutionary programming
    Lieslehto, J
    PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 2828 - 2833
  • [43] Generator parameter identification using evolutionary programming
    Ma, JT
    Wu, QH
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 1995, 17 (06) : 417 - 423
  • [44] Evolutionary programming using the levy probability distribution
    Lee, CY
    Song, Y
    GECCO-99: PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 1999, : 886 - 893
  • [45] SOC test scheduling using evolutionary programming
    Pan, ZL
    Chen, L
    Chen, GJ
    PROCEEDINGS OF THE THIRD INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION SCIENCE AND TECHNOLOGY, VOL 1, 2004, : 300 - 304
  • [46] Augmented Evolutionary Computation using Genetic Programming
    Ae, Tadashi
    Kamitani, Motoki
    COMPUTING ANTICIPATORY SYSTEMS, 2006, 839 : 417 - +
  • [47] Blind channel identification using evolutionary programming
    Kalluri, C
    Rao, SS
    Nelatury, SR
    CONFERENCE RECORD OF THE THIRTY-FOURTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2000, : 1212 - 1216
  • [48] Optimization of an automotive generator using evolutionary programming
    Koenig, A
    Williams, J
    Pekarek, S
    2003 IEEE 58TH VEHICULAR TECHNOLOGY CONFERENCE, VOLS1-5, PROCEEDINGS, 2003, : 3212 - 3219
  • [49] A hyper-heuristic approach to automated generation of mutation operators for evolutionary programming
    Hong, Libin
    Drake, John H.
    Woodward, John R.
    Ozcan, Ender
    APPLIED SOFT COMPUTING, 2018, 62 : 162 - 175
  • [50] Evolutionary programming based on ladder-changed mutation for adaptive system recognition
    Jie, Zhang
    Hui, Ju
    2006 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS PROCEEDINGS, VOLS 1-4: VOL 1: SIGNAL PROCESSING, 2006, : 181 - +