A LOGISTIC EQUATION WITH REFUGE AND NONLOCAL DIFFUSION

被引:51
|
作者
Garcia-Melian, Jorge [1 ]
Rossi, Julio D. [2 ]
机构
[1] Univ La Laguna, Dpto Anal Matemat, San Cristobal la Laguna 38271, Spain
[2] Univ Buenos Aires, Dpto Matemat, FCEyN, RA-1428 Buenos Aires, DF, Argentina
关键词
Nonlocal diffusion; logistic problems; POSITIVE SOLUTIONS; ASYMPTOTIC-BEHAVIOR; TRAVELING-WAVES; UNIQUENESS; EXISTENCE; MODEL; BIFURCATION; EIGENVALUE; GROWTH;
D O I
10.3934/cpaa.2009.8.2037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider the nonlocal stationary nonlinear problem (J * u)(x) - u(x) = - lambda u(x) + a(x)u(p)(x) in a domain Omega, with the Dirichlet boundary condition u(x) = 0 in R-N \ Omega and p > 1. The kernel J involved in the convolution (J * u)(x) = integral N-R J(x - y)u(y) dy is a smooth, compactly supported nonnegative function with unit integral, while the weight a(x) is assumed to be nonnegative and is allowed to vanish in a smooth subdomain Omega(0) of Omega. Both when a(x) is positive and when it vanishes in a subdomain, we completely discuss the issues of existence and uniqueness of positive solutions, as well as their behavior with respect to the parameter lambda.
引用
收藏
页码:2037 / 2053
页数:17
相关论文
共 50 条
  • [31] Asymptotic Speeds of Spread for a Nonlocal Diffusion Equation
    Zhaoquan Xu
    [J]. Journal of Dynamics and Differential Equations, 2018, 30 : 473 - 499
  • [32] TRAVELING WAVES FOR A BISTABLE EQUATION WITH NONLOCAL DIFFUSION
    Achleitner, Franz
    Kuehn, Christian
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2015, 20 (9-10) : 887 - 936
  • [33] Scaling behavior in a nonlocal and nonlinear diffusion equation
    Cecconi, F
    Banavar, JR
    Maritan, A
    [J]. PHYSICAL REVIEW E, 2000, 62 (05) : R5879 - R5882
  • [34] ON THE NONLOCAL DIFFUSION EQUATION WITH COMPETITION BETWEEN A NONLOCAL SOURCE AND DAMPING TERMS
    Ovono, Armel Andami
    Ipopa, Mohamed Ali
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 6 (02): : 1 - 12
  • [35] Asymptotic behaviour for a nonlocal diffusion equation on a lattice
    Ignat, Liviu I.
    Rossi, Julio D.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2008, 59 (05): : 918 - 925
  • [36] ON THE DYNAMICS OF A PERIODIC DELAY LOGISTIC EQUATION WITH DIFFUSION
    GOPALSAMY, K
    WENG, PX
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1992, 45 (01) : 113 - 134
  • [37] Local Dynamics of Logistic Equation with Delay and Diffusion
    Kashchenko, Sergey
    [J]. MATHEMATICS, 2021, 9 (13)
  • [38] Existence and uniqueness of steady state solutions of a nonlocal diffusive logistic equation
    Sun, Linan
    Shi, Junping
    Wang, Yuwen
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (04): : 1267 - 1278
  • [39] Properties of positive solution for nonlocal reaction-diffusion equation with nonlocal boundary
    Wang, Yulan
    Mu, Chunlai
    Xiang, Zhaoyin
    [J]. BOUNDARY VALUE PROBLEMS, 2007, 2007 (1)
  • [40] Existence and uniqueness of steady state solutions of a nonlocal diffusive logistic equation
    Linan Sun
    Junping Shi
    Yuwen Wang
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 1267 - 1278