Compact pseudo-Riemannian manifolds with parallel Weyl tensor

被引:15
|
作者
Derdzinski, Andrzej [1 ]
Roter, Witold [2 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Wroclaw Univ Technol, Inst Math & Comp Sci, PL-50370 Wroclaw, Poland
关键词
Parallel Weyl tensor; Conformally symmetric manifold/metric; Compact pseudo-Riemannian manifold; CONFORMALLY SYMMETRIC MANIFOLDS; AFFINE; SPACES;
D O I
10.1007/s10455-009-9173-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that in every dimension n = 3j + 2, j = 1, 2, 3, . . ., there exist compact pseudo-Riemannian manifolds with parallel Weyl tensor, which are Ricci-recurrent, but neither conformally flat nor locally symmetric, and represent all indefinite metric signatures. The manifolds in question are diffeomorphic to nontrivial torus bundles over the circle. They all arise from a construction that a priori yields bundles over the circle, having as the fibre either a torus, or a 2-step nilmanifold with a complete flat torsionfree connection; our argument only realizes the torus case.
引用
收藏
页码:73 / 90
页数:18
相关论文
共 50 条
  • [1] Compact pseudo-Riemannian manifolds with parallel Weyl tensor
    Andrzej Derdzinski
    Witold Roter
    [J]. Annals of Global Analysis and Geometry, 2010, 37 : 73 - 90
  • [2] On pseudo-Riemannian manifolds whose Ricci tensor is parallel
    Boubel, C
    Bergery, LB
    [J]. GEOMETRIAE DEDICATA, 2001, 86 (1-3) : 1 - 18
  • [3] On Pseudo-Riemannian Manifolds Whose Ricci Tensor is Parallel
    Charles Boubel
    Lionel Bérard Bergery
    [J]. Geometriae Dedicata, 2001, 86 : 1 - 18
  • [4] ON FOUR-DIMENSIONAL LOCALLY HOMOGENEOUS PSEUDO-RIEMANNIAN MANIFOLDS WITH ISOTROPIC WEYL TENSOR
    Klepikova, S.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 1183 - 1216
  • [5] FLAT PSEUDO-RIEMANNIAN STRUCTURES OF COMPACT MANIFOLDS
    FURNESS, P
    FEDIDA, E
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (03): : 169 - 171
  • [6] ON LOCALLY HOMOGENEOUS COMPACT PSEUDO-RIEMANNIAN MANIFOLDS
    Bochenski, Maciej
    Jastrzebski, Piotr
    Tralle, Aleksy
    [J]. COLLOQUIUM MATHEMATICUM, 2017, 150 (01) : 135 - 139
  • [7] Parallel pure spinors on pseudo-Riemannian manifolds
    Kath, I
    [J]. GEOMETRY AND TOPOLOGY OF SUBMANIFOLDS X: DIFFERENTIAL GEOMETRY IN HONOR OF PROF S.S. CHERN, 2000, : 87 - 103
  • [8] Parallel spinors on pseudo-Riemannian spinc manifolds
    Ikemakhen, Aziz
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (09) : 1473 - 1483
  • [9] A Comprehensive Survey on Parallel Submanifolds in Riemannian and Pseudo-Riemannian Manifolds
    Chen, Bang-Yen
    [J]. AXIOMS, 2019, 8 (04)
  • [10] On Classification of Four-dimensional Locally Homogeneous Pseudo-Riemannian Manifolds with an Isotropic Weyl Tensor
    Klepikova, S. V.
    [J]. RUSSIAN MATHEMATICS, 2019, 63 (07) : 75 - 79