On pseudo-Riemannian manifolds whose Ricci tensor is parallel

被引:7
|
作者
Boubel, C [1 ]
Bergery, LB [1 ]
机构
[1] Univ Nancy 1, INRIA, Inst Eli Cartan, CNRS,Unite Mixte Rech 7502, F-54506 Vandoeuvre Les Nancy, France
关键词
pseudo-Riemannian manifolds; Ricci curvature; holonomy group;
D O I
10.1023/A:1011903507837
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ricci-parallel Riemannian manifolds have a diagonal Ricci endomorphism Ric and are therefore, at least locally, a product of Einstein manifolds. This fails in the pseudo-Riemannian case. Using, on the one side, a general result in linear algebra due to Klingenberg and on the other side, a theorem on the holonomy of pseudo-Riemannian manifolds, this work classifies the different types of pseudo-Riemannian manifolds whose Ricci tensor is parallel.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] On Pseudo-Riemannian Manifolds Whose Ricci Tensor is Parallel
    Charles Boubel
    Lionel Bérard Bergery
    [J]. Geometriae Dedicata, 2001, 86 : 1 - 18
  • [2] Compact pseudo-Riemannian manifolds with parallel Weyl tensor
    Derdzinski, Andrzej
    Roter, Witold
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 37 (01) : 73 - 90
  • [3] Compact pseudo-Riemannian manifolds with parallel Weyl tensor
    Andrzej Derdzinski
    Witold Roter
    [J]. Annals of Global Analysis and Geometry, 2010, 37 : 73 - 90
  • [4] Almost *-η-Ricci solitons on Kenmotsu pseudo-Riemannian manifolds
    Rashmi, S. V. Divya
    Venkatesha, V.
    [J]. ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2022, 42 (04): : 241 - 250
  • [5] Parallel pure spinors on pseudo-Riemannian manifolds
    Kath, I
    [J]. GEOMETRY AND TOPOLOGY OF SUBMANIFOLDS X: DIFFERENTIAL GEOMETRY IN HONOR OF PROF S.S. CHERN, 2000, : 87 - 103
  • [6] Parallel spinors on pseudo-Riemannian spinc manifolds
    Ikemakhen, Aziz
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (09) : 1473 - 1483
  • [7] A Comprehensive Survey on Parallel Submanifolds in Riemannian and Pseudo-Riemannian Manifolds
    Chen, Bang-Yen
    [J]. AXIOMS, 2019, 8 (04)
  • [8] Characterizations of Ricci–Bourguignon Almost Solitons on Pseudo-Riemannian Manifolds
    Dhriti Sundar Patra
    Akram Ali
    Fatemah Mofarreh
    [J]. Mediterranean Journal of Mathematics, 2022, 19
  • [9] On pseudo-Riemannian manifolds with recurrent concircular curvature tensor
    Olszak, K.
    Olszak, Z.
    [J]. ACTA MATHEMATICA HUNGARICA, 2012, 137 (1-2) : 64 - 71
  • [10] On pseudo-Riemannian manifolds with recurrent concircular curvature tensor
    Karina Olszak
    Zbigniew Olszak
    [J]. Acta Mathematica Hungarica, 2012, 137 : 64 - 71