Modulating Nanoinhomogeneity at Electrode-Solid Electrolyte Interfaces for Dendrite-Proof Solid-State Batteries and Long-Life Memristors

被引:50
|
作者
Lu, Ziheng [1 ]
Yang, Ziwei [1 ]
Li, Cheng [1 ]
Wang, Kai [1 ]
Han, Jinlong [1 ]
Tong, Peifei [1 ]
Li, Guoxiao [1 ]
Vishnugopi, Bairav Sabarish [2 ]
Mukherjee, Partha P. [2 ]
Yang, Chunlei [1 ]
Li, Wenjie [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[2] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
关键词
conductive‐ atomic force microscope; critical current density; lithium filament; memristor; solid‐ state batteries; LITHIUM METAL ANODE; GRAIN-BOUNDARY; ION-TRANSPORT; TEMPERATURE; KINETICS; ORIGIN; GROWTH; CONDUCTIVITY; PERFORMANCE; RESISTANCE;
D O I
10.1002/aenm.202003811
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dendrite penetration in ceramic lithium conductors severely constrains the development of solid-state batteries (SSBs) while its nanoscale origin remains unelucidated. An in situ nanoscopic electrochemical characterization technique is developed based on conductive-atomic force microscopy (c-AFM) to reveal the local dendrite growth kinetics. Using Li7La3Zr2O12 (LLZO) as a model system, significant local inhomogeneity is observed with a hundredfold decrease in the dendrite triggering bias at grain boundaries compared with that at grain interiors. The origin of the local weakening is assigned to the nanoscale variation of elastic modulus and lithium flux detouring. An ionic-conductive polymeric homogenizing layer is designed which achieves a high critical current density of 1.8 mA cm(-2) and a low interfacial resistance of 14 omega cm(2). Practical SSBs based on LiFePO4 cathodes can be stably cycled over 300 times. Beyond this, highly reversible electrochemical dendrite healing in LLZO is discovered using the c-AFM electrode, based on which a model memristor with a high on/off ratio of approximate to 10(5) is demonstrated for >200 cycles. This work not only provides a novel tool to investigate and design interfaces in SSBs but also offers opportunities for solid electrolytes beyond energy applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Garnet-type double-layer solid electrolyte for dendrite-free solid-state Li batteries
    Feng, Xingyi
    Zeng, Yingping
    Yan, Deen
    Zou, Hanbo
    Yang, Wei
    Chen, Shengzhou
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (07) : 2001 - 2010
  • [42] Transforming Interface Chemistry throughout Garnet Electrolyte for Dendrite-Free Solid-State Batteries
    Xiong, Bing-Qing
    Nian, Qingshun
    Zhao, Xin
    Chen, Yawei
    Li, Yecheng
    Jiang, Jinyu
    Jiao, Shuhong
    Zhan, Xiaowen
    Ren, Xiaodi
    ACS ENERGY LETTERS, 2023, 8 (01) : 537 - 544
  • [43] Structural insight and modulating of sulfide-based solid-state electrolyte for high-performance solid-state sodium sulfur batteries
    Dong, Zhi Liang
    Yuan, Yi
    Martins, Vinicius
    Jin, Enzhong
    Gan, Yi
    Lin, Xiaoting
    Gao, Yingjie
    Hao, Xiaoge
    Guan, Yi
    Fu, Jiamin
    Pang, Xin
    Huang, Yining
    Tu, Qingsong Howard
    Sham, Tsun-Kong
    Zhao, Yang
    NANO ENERGY, 2024, 128
  • [44] Intercalated Electrolyte with High Transference Number for Dendrite-Free Solid-State Lithium Batteries
    Chen, Long
    Li, Wenxin
    Fan, Li-Zhen
    Nan, Ce-Wen
    Zhang, Qiang
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (28)
  • [45] Ionic liquid enhanced composite solid electrolyte for high-temperature/long-life/dendrite-free lithium metal batteries
    Yang, Yun
    Wu, Qian
    Wang, Dong
    Ma, Chenchong
    Chen, Zheng
    Su, Qinting
    Zhu, Caizhen
    Li, Cuihua
    JOURNAL OF MEMBRANE SCIENCE, 2020, 612
  • [46] An Ultra-Stable Electrode-Solid Electrolyte Composite for High-Performance All-Solid-State Li-Ion Batteries
    Huang, Yuqin
    Gao, Panyu
    Zhang, Tengfei
    Zhang, Xiang
    Xia, Guanglin
    Fang, Fang
    Sun, Dalin
    Guo, Zaiping
    Yu, Xuebin
    SMALL, 2023, 19 (26)
  • [47] A review of all-solid-state electrolytes for lithium batteries: high-voltage cathode materials, solid-state electrolytes and electrode-electrolyte interfaces
    Ma, Mingming
    Zhang, Menghui
    Jiang, Bitao
    Du, Yang
    Hu, Bingcheng
    Sun, Chengguo
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (07) : 1268 - 1297
  • [48] A Prussian blue analogue as a long-life cathode for liquid-state and solid-state sodium-ion batteries
    Huang, Tianbei
    Du, Guangyuan
    Qi, Yuruo
    Li, Jie
    Zhong, Wei
    Yang, Qiuju
    Zhang, Xuan
    Xu, Maowen
    INORGANIC CHEMISTRY FRONTIERS, 2020, 7 (20) : 3938 - 3944
  • [49] Tuning Solid Interfaces via Varying Electrolyte Distributions Enables High-Performance Solid-State Batteries
    Linfeng Peng
    Chuang Yu
    Ziqi Zhang
    Ruonan Xu
    Mengjun Sun
    Long Zhang
    Shijie Cheng
    Jia Xie
    Energy & Environmental Materials , 2023, (02) : 114 - 121
  • [50] Tuning Solid Interfaces via Varying Electrolyte Distributions Enables High-Performance Solid-State Batteries
    Linfeng Peng
    Chuang Yu
    Ziqi Zhang
    Ruonan Xu
    Mengjun Sun
    Long Zhang
    Shijie Cheng
    Jia Xie
    Energy & Environmental Materials, 2023, 6 (02) : 114 - 121