On the convergence of iterative methods for semidefinite linear systems

被引:30
|
作者
Lee, Young-Ju
Wu, Jinbiao
Xu, Jinchao
Zikatanov, Ludmil
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Peking Univ, Sch Math Sci, Lab Math & Appl Math, Beijing 100871, Peoples R China
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
iterative methods; matrix splittings; P-regularity; weak regularity; energy norm convergence;
D O I
10.1137/050644197
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Necessary and sufficient conditions for the energy norm convergence of the classical iterative methods for semidefinite linear systems are obtained in this paper. These new conditions generalize the classic notion of the P-regularity introduced by Keller [J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 ( 1965), pp. 281 - 290].
引用
收藏
页码:634 / 641
页数:8
相关论文
共 50 条
  • [31] Convergence of block iterative methods for linear systems with generalized H-matrices
    Zhang, Cheng-yi
    Xu, Chengxian
    Luo, Shuanghua
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 229 (01) : 70 - 84
  • [32] On the convergence of general stationary iterative methods for range-Hermitian singular linear systems
    Zhang, Naimin
    Wei, Yi-Min
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2010, 17 (01) : 139 - 154
  • [33] On linear convergence of iterative methods for the variational inequality problem
    Tseng, P.
    Journal of Computational and Applied Mathematics, 1995, 60 (01):
  • [34] Convergence analysis of the two preconditioned iterative methods for M-matrix linear systems
    Liu, Qingbing
    Huang, Jian
    Zeng, Shouzhen
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 281 : 49 - 57
  • [35] A convergence analysis of SOR iterative methods for linear systems with weak H-matrices
    Zhang, Cheng-yi
    Xue, Zichen
    Luo, Shuanghua
    OPEN MATHEMATICS, 2016, 14 : 747 - 760
  • [36] ON LINEAR CONVERGENCE OF ITERATIVE METHODS FOR THE VARIATIONAL INEQUALITY PROBLEM
    TSENG, P
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 60 (1-2) : 237 - 252
  • [37] Mixed Precision Iterative Refinement Methods for Linear Systems: Convergence Analysis Based on Krylov Subspace Methods
    Anzt, Hartwig
    Heuveline, Vincent
    Rocker, Bjoern
    APPLIED PARALLEL AND SCIENTIFIC COMPUTING, PT II, 2012, 7134 : 237 - 247
  • [38] ITERATIVE METHODS, OF LINEAR CONVERGENCE, FOR SOLVING PROBLEMS OF LINEAR PROGRAMMING AND APPROXIMATION
    OETTLI, W
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 272 (10): : 680 - &
  • [39] Probabilistic Iterative Methods for Linear Systems
    Cockayne, Jon
    Ipsen, Ilse C. F.
    Oates, Chris J.
    Reid, Tim W.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [40] Probabilistic iterative methods for linear systems
    Cockayne, Jon
    Ipsen, Ilse C.F.
    Oates, Chris J.
    Reid, Tim W.
    Journal of Machine Learning Research, 2021, 22