Homogeneous Hamiltonian operators and the theory of coverings
被引:9
|
作者:
Vergallo, Pierandrea
论文数: 0引用数: 0
h-index: 0
机构:
Univ Salento, Dept Math & Phys E De Giorgi, Lecce, ItalyUniv Salento, Dept Math & Phys E De Giorgi, Lecce, Italy
Vergallo, Pierandrea
[1
]
Vitolo, Raffaele
论文数: 0引用数: 0
h-index: 0
机构:
Univ Salento, Dept Math & Phys E De Giorgi, Lecce, Italy
Ist Nazl Fis Nucl, Sez Lecce, Lecce, ItalyUniv Salento, Dept Math & Phys E De Giorgi, Lecce, Italy
Vitolo, Raffaele
[1
,2
]
机构:
[1] Univ Salento, Dept Math & Phys E De Giorgi, Lecce, Italy
A new method (by Kersten, Krasil'shchik and Verbovetsky), based on the theory of differential coverings, allows to relate a system of PDEs with a differential operator in such a way that the operator maps conserved quantities into symmetries of the system of PDEs. When applied to a quasilinear first-order system of PDEs and a Dubrovin-Novikov homogeneous Hamiltonian operator the method yields conditions on the operator and the system that have interesting differential and projective geometric interpretations. (c) 2020 Elsevier B.V. All rights reserved.
机构:
Hunan Univ, Coll Math & Econometr, Changsha 410012, Hunan, Peoples R China
Yulin Normal Univ, Sch Math & Informat Sci, Guangxi Univ Key Lab Complex Syst Optimizat & Big, Yulin 537000, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410012, Hunan, Peoples R China
Wang, Pei
Li, Qingguo
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ, Coll Math & Econometr, Changsha 410012, Hunan, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410012, Hunan, Peoples R China