Micromachined Integrated Quantum Circuit Containing a Superconducting Qubit

被引:22
|
作者
Brecht, T. [1 ]
Chu, Y.
Axline, C.
Pfaff, W.
Blumoff, J. Z.
Chou, K.
Krayzman, L.
Frunzio, L.
Schoelkopf, R. J.
机构
[1] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA
来源
PHYSICAL REVIEW APPLIED | 2017年 / 7卷 / 04期
关键词
MICROWAVE;
D O I
10.1103/PhysRevApplied.7.044018
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a device demonstrating a lithographically patterned transmon integrated with a micro-machined cavity resonator. Our two-cavity, one-qubit device is a multilayer microwave-integrated quantum circuit (MMIQC), comprising a basic unit capable of performing circuit-QED operations. We describe the qubit-cavity coupling mechanism of a specialized geometry using an electric-field picture and a circuit model, and obtain specific system parameters using simulations. Fabrication of the MMIQC includes lithography, etching, and metallic bonding of silicon wafers. Superconducting wafer bonding is a critical capability that is demonstrated by a micromachined storage-cavity lifetime of 34.3 mu s, corresponding to a quality factor of 2 x 10(6) at single-photon energies. The transmon coherence times are T-1 = 6.4 mu s, and T-2(echo) = 11.7 mu s. We measure qubit-cavity dispersive coupling with a rate chi(q mu)/2 pi = -1.17 MHz, constituting a Jaynes-Cummings system with an interaction strength g/2 pi = 49 MHz. With these parameters we are able to demonstrate circuit-QED operations in the strong dispersive regime with ease. Finally, we highlight several improvements and anticipated extensions of the technology to complex MMIQCs.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Quantum Microwave Radiometry with a Superconducting Qubit
    Wang, Zhixin
    Xu, Mingrui
    Han, Xu
    Fu, Wei
    Puri, Shruti
    Girvin, S. M.
    Tang, Hong X.
    Shankar, S.
    Devoret, M. H.
    PHYSICAL REVIEW LETTERS, 2021, 126 (18)
  • [22] Perspective on superconducting qubit quantum computing
    Olivier Ezratty
    The European Physical Journal A, 59
  • [23] Quantum Zeno effect with a superconducting qubit
    Matsuzaki, Y.
    Saito, S.
    Kakuyanagi, K.
    Semba, K.
    PHYSICAL REVIEW B, 2010, 82 (18):
  • [24] Quantum state transport in a square-lattice superconducting qubit circuit under gauge potential
    Zhao, Yan-Jun
    Ning, Tan
    Wang, Yu-Qi
    Zheng, Ya-Rui
    Hui, Wang
    Liu, Wu-Ming
    ACTA PHYSICA SINICA, 2023, 72 (10)
  • [25] Circuit quantum electrodynamics with a spin qubit
    K. D. Petersson
    L. W. McFaul
    M. D. Schroer
    M. Jung
    J. M. Taylor
    A. A. Houck
    J. R. Petta
    Nature, 2012, 490 : 380 - 383
  • [26] Circuit quantum electrodynamics with a spin qubit
    Petersson, K. D.
    McFaul, L. W.
    Schroer, M. D.
    Jung, M.
    Taylor, J. M.
    Houck, A. A.
    Petta, J. R.
    NATURE, 2012, 490 (7420) : 380 - 383
  • [27] Integrated circuit package technology for micromachined accelerometers
    Ford Microelectronics, Inc, Colorado Springs, United States
    Natl Electron Packag Prod Conf Proc Tech Program, (1007-1013):
  • [28] Suppression of Qubit Crosstalk in a Tunable Coupling Superconducting Circuit
    Mundada, Pranav
    Zhang, Gengyan
    Hazard, Thomas
    Houck, Andrew
    PHYSICAL REVIEW APPLIED, 2019, 12 (05):
  • [29] Measurement of quality factor and losses in superconducting microwave resonator integrated with NbN/AlN/NbN qubit circuit
    Qiu, W.
    Makise, K.
    Terai, H.
    Nakamura, Y.
    Wang, Z.
    11TH EUROPEAN CONFERENCE ON APPLIED SUPERCONDUCTIVITY (EUCAS2013), PTS 1-4, 2014, 507
  • [30] Quantum nondemolition measurement of a superconducting flux qubit
    Takashima, Kohji
    Nishida, Munehiro
    Matsuo, Shigemasa
    Hatakenaka, Noriyuki
    LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 945 - +