Ultrafast extreme rejuvenation of metallic glasses by shock compression

被引:87
|
作者
Ding, G. [1 ,2 ]
Li, C. [1 ,3 ]
Zaccone, A. [4 ,5 ,6 ]
Wang, W. H. [7 ]
Lei, H. C. [8 ]
Jiang, F. [2 ]
Ling, Z. [1 ]
Jiang, M. Q. [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
[3] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
[4] Univ Milan, Dept Phys, Via Celoria 16, I-20133 Milan, Italy
[5] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB2 3RA, England
[6] Univ Cambridge, Cavendish Lab, Cambridge CB3 9HE, England
[7] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[8] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China
来源
SCIENCE ADVANCES | 2019年 / 5卷 / 08期
基金
中国国家自然科学基金;
关键词
AMORPHOUS ALLOY; STRUCTURAL RELAXATION; SHEAR BANDS; FREE-VOLUME; LIQUIDS; DEFORMATION; PLASTICITY; DYNAMICS; STRENGTH; ORIGIN;
D O I
10.1126/sciadv.aaw6249
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Structural rejuvenation of glasses not only provides fundamental insights into their complicated dynamics but also extends their practical applications. However, it is formidably challenging to rejuvenate a glass on very short time scales. Here, we present the first experimental evidence that a specially designed shock compression technique can rapidly rejuvenate metallic glasses to extremely high-enthalpy states within a very short time scale of about 365 +/- 8 ns. By controlling the shock stress amplitude, the shock-induced rejuvenation is successfully frozen at different degrees. The underlying structural disordering is quantitatively characterized by the anomalous boson heat capacity peak of glasses. A Deborah number, defined as a competition of time scales between the net structural disordering and the applied loading, is introduced to explain the observed ultrafast rejuvenation phenomena of metallic glasses.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Effect of heat treatment paths on the aging and rejuvenation of metallic glasses
    Yuan, Suyue
    Liang, Aoyan
    Liu, Chang
    Tian, Liang
    Mousseau, Normand
    Branicio, Paulo S.
    PHYSICAL REVIEW MATERIALS, 2023, 7 (12):
  • [32] Rejuvenation of metallic glasses by non-affine thermal strain
    S. V. Ketov
    Y. H. Sun
    S. Nachum
    Z. Lu
    A. Checchi
    A. R. Beraldin
    H. Y. Bai
    W. H. Wang
    D. V. Louzguine-Luzgin
    M. A. Carpenter
    A. L. Greer
    Nature, 2015, 524 : 200 - 203
  • [33] Role of thermal expansion heterogeneity in the cryogenic rejuvenation of metallic glasses
    Shang, Baoshuang
    Guan, Pengfei
    Barrat, Jean-Louis
    JOURNAL OF PHYSICS-MATERIALS, 2018, 1 (01):
  • [34] Achieving extreme rejuvenation and strain-hardening of metallic glass
    Long, Zhilin (longzl@xtu.edu.cn), Elsevier Ltd (1014):
  • [35] Achieving extreme rejuvenation and strain-hardening of metallic glass
    Wan, Rutong
    Long, Zhilin
    Cui, Yuxuan
    You, Lidong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1014
  • [36] EXPLOSIVE SHOCK DEFORMATION OF METALLIC GLASSES
    MURR, LE
    INAL, OT
    WANG, SH
    MATERIALS SCIENCE AND ENGINEERING, 1981, 49 (01): : 57 - 64
  • [37] Shock compression of CuxZr100−x metallic glasses from molecular dynamics simulations
    Peng Wen
    Brian Demaske
    Douglas E. Spearot
    Simon R. Phillpot
    Journal of Materials Science, 2018, 53 : 5719 - 5732
  • [38] Ultrafast dynamics of shock compression of molecular monolayers
    Patterson, JE
    Lagutchev, A
    Huang, W
    Dlott, DD
    PHYSICAL REVIEW LETTERS, 2005, 94 (01)
  • [39] Theory of Pressure-Induced Rejuvenation and Strain Hardening in Metallic Glasses
    Phan, Anh D.
    Zaccone, Alessio
    Lam, Vu D.
    Wakabayashi, Katsunori
    PHYSICAL REVIEW LETTERS, 2021, 126 (02)
  • [40] Quenching Temperature and Cooling Rate Effects on Thermal Rejuvenation of Metallic Glasses
    Yong Hak Kim
    Ka Ram Lim
    Dong-Won Lee
    Yoon Suk Choi
    Young Sang Na
    Metals and Materials International, 2021, 27 : 5108 - 5113