Prediction of Safe Bearing Capacity of Noncohesive Soil in Arid Zone Using Artificial Neural Networks

被引:18
|
作者
Gupta, Rajiv [1 ]
Goyal, Kartik [1 ]
Yadav, Navneet [1 ]
机构
[1] Birla Inst Technol & Sci, Dept Civil Engn, Pilani 333031, Rajasthan, India
关键词
Soil bearing capacity; Artificial neural network (ANN); Noncohesive; Coefficient of curvature; Coefficient of uniformity; SHALLOW FOUNDATIONS; FEEDFORWARD NETWORKS; RING FOOTINGS; MODEL; SAND; LOAD; RIVER;
D O I
10.1061/(ASCE)GM.1943-5622.0000514
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Estimation of safe bearing capacity (SBC) of noncohesive soil based on Indian Standard Code requires a lot of field work, viz, conducting direct shear tests to determine cohesion and angle of internal friction, performing the standard penetration test to determine the N-value of soil, and finding the relative density and dry density of soil. The present study does away with these soil parameters except for the design value of density and uses the results of sieve analysis to determine the SBC of soil. This research proposes the use of artificial neural network (ANN) to predict the SBC of noncohesive soil as a function of coefficient of curvature, coefficient of uniformity, and design value of soil density along with footing dimensions such as depth, width and diameter (in case of circular footing), and the desired settlement of the footing. The results show that ANN is a useful technique in estimating SBC of noncohesive soil using parameters derived from sieve analysis results and match closely from the results derived from the traditional methods based on Terzaghi's theories.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Prediction of hydrocyclone performance using artificial neural networks
    Karimi, M.
    Dehghani, A.
    Nezamalhosseini, A.
    Talebi, Sh
    JOURNAL OF THE SOUTH AFRICAN INSTITUTE OF MINING AND METALLURGY, 2010, 110 (05): : 207 - 212
  • [42] Stability Prediction of ΔΣ Modulators using Artificial Neural Networks
    Kaesser, Paul
    Kaltenstadler, Sebastian
    Conrad, Joschua
    Wagner, Johannes
    Ismail, Omar
    Ortmanns, Maurits
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [43] Prediction of Sediment Concentration Using Artificial Neural Networks
    Dogan, Emrah
    TEKNIK DERGI, 2009, 20 (01): : 4567 - 4582
  • [44] Time series prediction using artificial neural networks
    Pérez-Chavarríia, MA
    Hidalgo-Silva, HH
    Ocampo-Torres, FJ
    CIENCIAS MARINAS, 2002, 28 (01) : 67 - 77
  • [45] Prediction of extrudate properties using artificial neural networks
    Shankar, T. J.
    Bandyopadhyay, S.
    FOOD AND BIOPRODUCTS PROCESSING, 2007, 85 (C1) : 29 - 33
  • [46] Prediction of groundwater drawdown using artificial neural networks
    Vahid Gholami
    Hossein Sahour
    Environmental Science and Pollution Research, 2022, 29 : 33544 - 33557
  • [47] Pile capacity prediction using neural networks technique
    Dyminksy, AS
    Parente-Ribeiro, E
    Romanel, C
    Beim, JW
    APPLICATION OF STRESS-WAVE THEORY TO PILES: QUALITY ASSURANCE ON LAND AND OFFSHORE PILING, 2000, : 127 - 134
  • [48] Prediction of properties of rubber by using artificial neural networks
    Vijayabaskar, V
    Gupta, R
    Chakrabarti, PP
    Bhowmick, AK
    JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 100 (03) : 2227 - 2237
  • [49] Lactose Intolerance Prediction Using Artificial Neural Networks
    Spahic, Lemana
    Sehovic, Emir
    Secerovic, Alem
    Dozic, Zerina
    Smajlovic-Skenderagic, Lejla
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING, CMBEBIH 2019, 2020, 73 : 505 - 510
  • [50] Prediction of tunnel convergence using Artificial Neural Networks
    Mahdevari, Satar
    Torabi, Seyed Rahman
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2012, 28 : 218 - 228