Determination of periodic solutions for nonlinear oscillators with fractional powers by He's modified Lindstedt-Poincar, method

被引:27
|
作者
Yildirim, Ahmet [1 ]
机构
[1] Ege Univ, Fac Sci, Dept Math, TR-35100 Bornova, Turkey
关键词
He's modified Lindstedt-Poincare method; Nonlinear oscillatiors with fractional powers; PARAMETER-EXPANSION METHOD; PERTURBATION TECHNIQUE; EXPANDING METHOD; POL OSCILLATOR; U(1/3) FORCE; LIMIT-CYCLE; VAN;
D O I
10.1007/s11012-009-9212-4
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
He's modified Lindstedt-Poincar, method is applied to nonlinear oscillatiors with fractional powers. Comparison of the obtained results with exact solutions provides confirmation for the validity of He's modified Lindstedt-Poincar, method.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [21] A MODIFIED LINDSTEDT-POINCARE METHOD FOR CERTAIN STRONGLY NONLINEAR OSCILLATORS
    CHEUNG, YK
    CHEN, SH
    LAU, SL
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1991, 26 (3-4) : 367 - 378
  • [22] A generalized Padé–Lindstedt–Poincaré method for predicting homoclinic and heteroclinic bifurcations of strongly nonlinear autonomous oscillators
    Zhenbo Li
    Jiashi Tang
    Nonlinear Dynamics, 2016, 84 : 1201 - 1223
  • [23] Periodic solutions for some strongly nonlinear oscillators applying He's methods
    Wang, Lili
    IAENG International Journal of Applied Mathematics, 2018, 48 (04) : 368 - 372
  • [24] Periodic Solutions of Strongly Nonlinear Oscillators Using He's Frequency Formulation
    Ismail, Gamal M.
    Moatimid, Galal M.
    Yamani, Mohammed I.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03): : 2155 - 2172
  • [25] Approximate period of nonlinear oscillators with discontinuities by modified Lindstedt-Poincare method
    Liu, HM
    CHAOS SOLITONS & FRACTALS, 2005, 23 (02) : 577 - 579
  • [26] Application of Modified He's Variational Method to Nonlinear Oscillators with Discontinuities
    Demirbag, S. Altay
    Kaya, M. O.
    Zengin, F. Oezen
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2009, 10 (01) : 27 - 31
  • [27] Homoclinic Connections in Strongly Self-Excited Nonlinear Oscillators: The Melnikov Function and the Elliptic Lindstedt–Poincaré Method
    Mohamed Belhaq
    Bernold Fiedler
    Faouzi Lakrad
    Nonlinear Dynamics, 2000, 23 : 67 - 86
  • [28] Approximate Solutions for Conservative Nonlinear Oscillators by He's Homotopy Method
    Belendez, Augusto
    Alvarez, Mariela L.
    Mendez, David I.
    Fernandez, Elena
    Yebra, Maria S.
    Belendez, Tarsicio
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2008, 63 (09): : 529 - 537
  • [29] A Modified Lindstedt-Poincare Method for Strongly Mixed-Parity Nonlinear Oscillators
    Sun, W. P.
    Wu, B. S.
    Lim, C. W.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2007, 2 (02): : 141 - 145
  • [30] Generalization of the modified Lindstedt-Poincare method for solving some strong nonlinear oscillators
    Alam, M. S.
    Yeasmin, I. A.
    Ahamed, Md S.
    AIN SHAMS ENGINEERING JOURNAL, 2019, 10 (01) : 195 - 201