A feedback-based prediction strategy for dynamic multi-objective evolutionary optimization

被引:14
|
作者
Liang, Zhengping [1 ]
Zou, Ya [1 ]
Zheng, Shunxiang [1 ]
Yang, Shengxiang [2 ]
Zhu, Zexuan [1 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[2] De Montfort Univ, Sch Comp Sci & Informat, Leicester LE1 9BH, Leics, England
基金
中国国家自然科学基金;
关键词
Dynamic multi-objective optimization; Evolutionary algorithm; Variable classification; Step size exploration; Feedback; DIFFERENTIAL EVOLUTION; ALGORITHM; DIVERSITY; HYBRID;
D O I
10.1016/j.eswa.2021.114594
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prediction methods are widely used to solve dynamic multi-objective optimization problems (DMOPs). The key to the success of prediction methods lies in the accurate tracking of the new location of the Pareto set (PS) or Pareto front (PF) in a new environment. To improve the prediction accuracy, this paper proposes a novel feedback-based prediction strategy (FPS), which consists of two feedback mechanisms, namely correction feedback (CF) and effectiveness feedback (EF). CF is used to correct an initial prediction model. When the environment changes, CF constructs a representative individual to reflect the characteristics of the current population. The predicted solution of this individual in the new environment is calculated based on the initial prediction model. Afterward, a step size exploration method based on variable classification is introduced to adaptively correct the prediction model. EF is applied to enhance the effectiveness of re-initialization in two stages. In the first stage, half of the individuals in the population are re-initialized based on the corrected prediction model. In the second stage, EF re-initializes the rest of the individuals in the population using two rounds of roulette method based on the re-initialization effectiveness feedback of the first stage. The proposed FPS is incorporated into a dynamic multi-objective optimization evolutionary algorithm (DMOEA) based on decomposition resulting in a new algorithm denoted as MOEA/D-FPS. MOEA/D-FPS is compared with six state-of-theart DMOEAs on twenty-two different benchmark problems. The experimental results demonstrate the effectiveness and efficacy of MOEA/D-FPS in solving DMOPs.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Prediction-based population re-initialization for evolutionary dynamic multi-objective optimization
    Zhou, Aimin
    Jin, Yaochu
    Zhang, Qingfu
    Sendhoff, Bernhard
    Tsang, Edward
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2007, 4403 : 832 - +
  • [32] Dynamic multi-objective optimization algorithm based on ecological strategy
    Zhang, Shiwen
    Li, Zhiyong
    Chen, Shaomiao
    Li, Renfa
    Li, Z. (zhiyong.li@hnu.edu.cn), 1600, Science Press (51): : 1313 - 1330
  • [33] THE OPTIMIZATION OF A CENTRIFUGAL IMPELLER BASED ON A NEW MULTI-OBJECTIVE EVOLUTIONARY STRATEGY
    Li, Xiaojian
    Zhao, Yijia
    Liu, Zhengxian
    Chen, Hua
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2016, VOL 2C, 2016,
  • [34] A new dynamic strategy for dynamic multi-objective optimization
    Wu, Yan
    Shi, Lulu
    Liu, Xiaoxiong
    INFORMATION SCIENCES, 2020, 529 : 116 - 131
  • [35] A New Evolutionary Strategy for Pareto Multi-Objective Optimization
    Elbeltagi, E.
    Hegazy, T.
    Grierson, D.
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON ENGINEERING COMPUTATIONAL TECHNOLOGY, 2010, 94
  • [36] Classification-based multi-strategy prediction method for dynamic multi-objective optimization problems
    Li E.-C.
    Zhou Y.
    Kongzhi yu Juece/Control and Decision, 2021, 36 (07): : 1569 - 1580
  • [37] Preferences-Based Choice Prediction in Evolutionary Multi-objective Optimization
    Aggarwal, Manish
    Heinermann, Justin
    Oehmcke, Stefan
    Kramer, Oliver
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2017, PT I, 2017, 10199 : 715 - 724
  • [38] Dynamic multi-objective optimization algorithm based on individual prediction
    Wang W.-L.
    Chen Z.-K.
    Wu F.
    Wang Z.
    Yu M.-J.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (11): : 2133 - 2146
  • [39] Simplex Model Based Evolutionary Algorithm for Dynamic Multi-Objective Optimization
    Wei, Jingxuan
    Zhang, Mengjie
    AI 2011: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2011, 7106 : 372 - +
  • [40] Dynamic multi-objective optimization evolutionary algorithm based on new model
    Department of Mathematics, Faculty of Science, Xidian University, Xi'an 710071, China
    不详
    不详
    Jisuanji Yanjiu yu Fazhan, 2008, 4 (603-611):