Optimizing Q-Learning with K-FAC AlgorithmOptimizing Q-Learning with K-FAC Algorithm

被引:0
|
作者
Beltiukov, Roman [1 ]
机构
[1] Peter Great St Petersburg Polytech Univ, St Petersburg, Russia
关键词
Q-learning; K-FAC; Reinforcement learning; Natural gradient;
D O I
10.1007/978-3-030-39575-9_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we present intermediate results of the application of Kronecker-factored Approximate curvature (K-FAC) algorithm to Q-learning problem. Being more expensive to compute than plain stochastic gradient descent, K-FAC allows the agent to converge a bit faster in terms of epochs compared to Adam on simple reinforcement learning tasks and tend to be more stable and less strict to hyperparameters selection. Considering the latest results we show that DDQN with K-FAC learns more quickly than with other optimizers and improves constantly in contradiction to similar with Adam or RMSProp.
引用
收藏
页码:3 / 8
页数:6
相关论文
共 50 条
  • [21] Bayesian Q-learning
    Dearden, R
    Friedman, N
    Russell, S
    [J]. FIFTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-98) AND TENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICAL INTELLIGENCE (IAAI-98) - PROCEEDINGS, 1998, : 761 - 768
  • [22] Convex Q-Learning
    Lu, Fan
    Mehta, Prashant G.
    Meyn, Sean P.
    Neu, Gergely
    [J]. 2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 4749 - 4756
  • [23] Mutual Q-learning
    Reid, Cameron
    Mukhopadhyay, Snehasis
    [J]. 2020 3RD INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTS (ICCR 2020), 2020, : 128 - 133
  • [24] Q-learning automaton
    Qian, F
    Hirata, H
    [J]. IEEE/WIC INTERNATIONAL CONFERENCE ON INTELLIGENT AGENT TECHNOLOGY, PROCEEDINGS, 2003, : 432 - 437
  • [25] Periodic Q-Learning
    Lee, Donghwan
    He, Niao
    [J]. LEARNING FOR DYNAMICS AND CONTROL, VOL 120, 2020, 120 : 582 - 598
  • [26] Fuzzy Q-learning
    Glorennec, PY
    Jouffe, L
    [J]. PROCEEDINGS OF THE SIXTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS I - III, 1997, : 659 - 662
  • [27] Q-learning and robotics
    Touzet, CF
    Santos, JM
    [J]. SIMULATION IN INDUSTRY 2001, 2001, : 685 - 689
  • [28] Neural Q-learning
    ten Hagen, S
    Kröse, B
    [J]. NEURAL COMPUTING & APPLICATIONS, 2003, 12 (02): : 81 - 88
  • [29] Logistic Q-Learning
    Bas-Serrano, Joan
    Curi, Sebastian
    Krause, Andreas
    Neu, Gergely
    [J]. 24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [30] Neural Q-learning
    Stephan ten Hagen
    Ben Kröse
    [J]. Neural Computing & Applications, 2003, 12 : 81 - 88