Feature and Model Level Fusion of Pretrained CNN for Remote Sensing Scene Classification

被引:41
|
作者
Du, Peijun [1 ,2 ]
Li, Erzhu [3 ]
Xia, Junshi [4 ]
Samat, Alim [5 ]
Bai, Xuyu [1 ,2 ]
机构
[1] Nanjing Univ, Dept Geog Informat Sci, Key Lab Satellite Mapping Technol & Applicat, State Adm Surveying Mapping & Geoinformat China, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ, Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Jiangsu, Peoples R China
[3] Jiangsu Normal Univ, Sch Geog Geomat & Planning, Xuzhou 221116, Jiangsu, Peoples R China
[4] RIKEN, RIKEN Ctr Adv Intelligence Projec, Tokyo 1030027, Japan
[5] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural networks (CNNs); feature fusion; multiscale improved Fisher kernel; scene classification; subspace learning; RETRIEVAL; NETWORKS;
D O I
10.1109/JSTARS.2018.2878037
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Convolutional neural networks (CNN) have attracted tremendous attention in the remote sensing community due to its excellent performance in different domains. Especially for remote sensing scene classification, the CNN-based methods have brought a great breakthrough. However, it is not feasible to fully design and train a new CNN model for remote sensing scene classification, as this usually requires a large number of training samples and high computational costs. To alleviate these limitations of fully training a new model, some work attempts to use the pretrained CNN models as feature extractors to build feature representation of scene images for classification and has achieved impressive results. In this scheme, how to construct feature representation of scene image via the pretrained CNN model becomes the key process. Existing studies paid a little attention to build more discriminative feature representation by exploring the potential benefits of multilayer features from a single CNN model and different feature representations from multiple CNN models. To this end, this paper presents a fusion strategy to build the feature representation of the scene images by integrating multilayer features of a single pretrained CNN model, and extends it to a framework of multiple CNN models. For these purposes, a multiscale improved Fisher kernel coding method is used to build feature representation of the scene images on convolutional layers, and a feature fusion approach based on two feature subspace learning methods [principal component analysis (PCA)/spectral regression kernel discriminant analysis and PCA/spectral regression kernel locality preserving projection] is proposed to construct final fused features for scene classification. For validation and comparison purposes, the proposed approaches are evaluated with two challenging high-resolution remote sensing datasets and shows the competitive performance compared with existing state-of-the-art baselines such as fully trained CNN models, fine tuning CNN models, and other related works.
引用
收藏
页码:2600 / 2611
页数:12
相关论文
共 50 条
  • [21] Preferred Feature Representation for Remote Sensing Scene Classification
    Yang, Meng
    Chen, Yaxiong
    Lu, Xiongbo
    Xiong, Shengwu
    2024 16TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, ICMLC 2024, 2024, : 418 - 423
  • [22] Transferring CNN With Adaptive Learning for Remote Sensing Scene Classification
    Wang, Weiquan
    Chen, Yushi
    Ghamisi, Pedram
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [23] USING CNN-BASED HIGH-LEVEL FEATURES FOR REMOTE SENSING SCENE CLASSIFICATION
    Fang, Zhengzheng
    Li, Wei
    Zou, Jinyi
    Du, Qian
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2610 - 2613
  • [24] MLFC-net: A multi-level feature combination attention model for remote sensing scene classification
    Wang, Deyi
    Zhang, Chengkun
    Han, Min
    COMPUTERS & GEOSCIENCES, 2022, 160
  • [25] Multilevel Feature Fusion Networks With Adaptive Channel Dimensionality Reduction for Remote Sensing Scene Classification
    Wang, Xin
    Duan, Lin
    Shi, Aiye
    Zhou, Huiyu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [26] Image Feature Fusion Based Remote Sensing Scene Zero-Shot Classification Algorithm
    Wu Chen
    Wang Hongwei
    Yuan Yuwei
    Wang Zhiqiang
    Liu Yu
    Cheng Hong
    Quan Jicheng
    ACTA OPTICA SINICA, 2019, 39 (06)
  • [27] Attention-guided feature fusion and joint learning for remote sensing image scene classification
    Yu D.
    Xu Q.
    Zhao C.
    Guo H.
    Lu J.
    Lin Y.
    Liu X.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (04): : 624 - 637
  • [28] Multilayer Feature Fusion Network With Spatial Attention and Gated Mechanism for Remote Sensing Scene Classification
    Meng, Qingyan
    Zhao, Maofan
    Zhang, Linlin
    Shi, Wenxu
    Su, Chen
    Bruzzone, Lorenzo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [29] Frequency and Texture Aware Multi-Domain Feature Fusion for Remote Sensing Scene Classification
    Ashraf, Russo
    Jo, Kang-Hyun
    IEEE ACCESS, 2025, 13 : 16380 - 16393
  • [30] Multi-Layers Feature Fusion of Convolutional Neural Network for Scene Classification of Remote Sensing
    Ma, Chenhui
    Mu, Xiaodong
    Sha, Dexuan
    IEEE ACCESS, 2019, 7 : 121685 - 121694