Positivity results for Stanley's character polynomials

被引:3
|
作者
Rattan, A. [1 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
关键词
representation theory; symmetric group; characters; permutation factorizations; combinatorics;
D O I
10.1016/j.jalgebra.2006.07.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Stanley [R.P. Stanley, Irreducible symmetric group characters of rectangular shape, Sem. Lothar. Combin. 50 (B50d) (2003) 11 pp.] the author introduces expressions for the normalized characters of the symmetric group and states some positivity conjectures for these expressions. Here, we give an affirmative partial answer to Stanley's positivity conjectures about the expressions using results on Kerov polynomials. In particular, we use new positivity results in Goulden and Rattan [I.P. Goulden, A. Rattan, An explicit form for Kerov's character polynomials, Trans. Amer. Math. Soc., in press, math.CO/0505317, November 2005]. We shall see that the generating series C(t) introduced in [I.P. Goulden, A. Rattan, An explicit form for Kerov's character polynomials, Trans. Amer. Math. Soc., in press, math.CO/0505317, November 2005] is critical to our discussion. (c) 2006 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:26 / 43
页数:18
相关论文
共 50 条