Direct derivation of Skullerud's Monte Carlo method for charged particle transport from the linear Boltzmann equation

被引:12
|
作者
Longo, S
机构
[1] Univ Bari, Dipartimento Chim, I-70126 Bari, Italy
[2] CNR, IMIP, I-70126 Bari, Italy
关键词
Monte Carlo and statistical methods; molecular dynamics and particle methods; plasma properties;
D O I
10.1016/S0378-4371(02)01007-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Test Particle Monte Carlo technique with null collisions as proposed by Skullerud is derived directly from the linear Boltzmann equation including electric and magnetic field effects. To this aim the formal solution is written as the average of a Poisson distribution of multiple time integrals. The statistical properties of the stochastic processes used in the Monte Carlo method follow as natural requirements for the calculation of this average. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:389 / 396
页数:8
相关论文
共 50 条
  • [11] The linear boltzmann equation for long-range forces: A derivation from particle systems
    Desvillettes, L
    Pulvirenti, M
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (08): : 1123 - 1145
  • [12] Numerical study of a direct simulation Monte Carlo method for the Uehling-Uhlenbeck-Boltzmann equation
    Garcia, AL
    Wagner, W
    RAREFIED GAS DYNAMICS, 2003, 663 : 398 - 405
  • [13] A new algorithm for the simulation of the boltzmann equation using the direct simulation monte-carlo method
    Ganjaei, A. A.
    Nourazar, S. S.
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2009, 23 (10) : 2861 - 2870
  • [14] A new algorithm for the simulation of the boltzmann equation using the direct simulation monte-carlo method
    A. A. Ganjaei
    S. S. Nourazar
    Journal of Mechanical Science and Technology, 2009, 23 : 2861 - 2870
  • [15] A CONVERGENCE PROOF FOR BIRD DIRECT SIMULATION MONTE-CARLO METHOD FOR THE BOLTZMANN-EQUATION
    WAGNER, W
    JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (3-4) : 1011 - 1044
  • [16] Coupling the Monte-Carlo Method with Semi-Analytical Solutions of the Boltzmann Transport Equation
    Brugger, S. C.
    Peikert, V.
    Schenk, A.
    SISPAD: 2008 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, 2008, : 297 - +
  • [17] A Monte Carlo method for small signal analysis of the Boltzmann equation
    Kosina, H
    Nedjalkov, M
    Selberherr, S
    JOURNAL OF APPLIED PHYSICS, 2000, 87 (09) : 4308 - 4314
  • [18] The Monte Carlo method for particle transport problems
    Reiter, Detlev
    COMPUTATIONAL MANY-PARTICLE PHYSICS, 2008, 739 : 141 - 158
  • [19] A QUASI-MONTE-CARLO METHOD FOR THE BOLTZMANN-EQUATION
    LECOT, C
    MATHEMATICS OF COMPUTATION, 1991, 56 (194) : 621 - 644
  • [20] An asymptotic preserving Monte Carlo method for the multispecies Boltzmann equation
    Zhang, Bin
    Liu, Hong
    Jin, Shi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 305 : 575 - 588