Direct derivation of Skullerud's Monte Carlo method for charged particle transport from the linear Boltzmann equation

被引:12
|
作者
Longo, S
机构
[1] Univ Bari, Dipartimento Chim, I-70126 Bari, Italy
[2] CNR, IMIP, I-70126 Bari, Italy
关键词
Monte Carlo and statistical methods; molecular dynamics and particle methods; plasma properties;
D O I
10.1016/S0378-4371(02)01007-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Test Particle Monte Carlo technique with null collisions as proposed by Skullerud is derived directly from the linear Boltzmann equation including electric and magnetic field effects. To this aim the formal solution is written as the average of a Poisson distribution of multiple time integrals. The statistical properties of the stochastic processes used in the Monte Carlo method follow as natural requirements for the calculation of this average. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:389 / 396
页数:8
相关论文
共 50 条
  • [1] Deviational particle Monte Carlo for the Boltzmann equation
    Wagner, Wolfgang
    MONTE CARLO METHODS AND APPLICATIONS, 2008, 14 (03): : 191 - 268
  • [2] THE DERIVATION OF THE LINEAR BOLTZMANN EQUATION FROM A RAYLEIGH GAS PARTICLE MODEL
    Matthies, Karsten
    Stone, George
    Theil, Florian
    KINETIC AND RELATED MODELS, 2018, 11 (01) : 137 - 177
  • [3] Implementation of the Wigner-Boltzmann transport equation within particle Monte Carlo simulation
    Querlioz, Damien
    Saint-Martin, Jerome
    Dollfus, Philippe
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2010, 9 (3-4) : 224 - 231
  • [4] Implementation of the Wigner-Boltzmann transport equation within particle Monte Carlo simulation
    Institut d'Electronique Fondamentale, CNRS, Bâtiment 220, 91405 Orsay, France
    J. Comput. Electron., 2009, 3-4 (224-231): : 224 - 231
  • [5] Implementation of the Wigner-Boltzmann transport equation within particle Monte Carlo simulation
    Damien Querlioz
    Jérôme Saint-Martin
    Philippe Dollfus
    Journal of Computational Electronics, 2010, 9 : 224 - 231
  • [6] Direct simulation Monte Carlo method for the Uehling-Uhlenbeck-Boltzmann equation
    Garcia, AL
    Wagner, W
    PHYSICAL REVIEW E, 2003, 68 (05):
  • [7] Monte Carlo simulation of charged particle transport in biomatter
    Emfietzoglou, D
    Papamichael, G
    Moscovitch, M
    PHYSICA MEDICA, 2001, 17 : 113 - 114
  • [8] On approximative linear Boltzmann transport equation for charged particles
    Tervo, J.
    Kokkonen, P.
    Frank, M.
    Herty, M.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (14): : 2905 - 2939
  • [9] Convergence of A Distributional Monte Carlo Method for the Boltzmann Equation
    Schrock, Christopher R.
    Wood, Aihua W.
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (01) : 102 - 121
  • [10] THE MOMENT GUIDED MONTE CARLO METHOD FOR THE BOLTZMANN EQUATION
    Dimarco, Giacomo
    KINETIC AND RELATED MODELS, 2013, 6 (02) : 291 - 315