Strong plasmonic fluorescence enhancement of individual plant light-harvesting complexes

被引:20
|
作者
Kyeyune, Farooq [1 ]
Botha, Joshua L. [1 ]
van Heerden, Bertus [1 ]
Maly, Pavel [2 ,3 ]
van Grondelle, Rienk [2 ]
Diale, Mmantsae [1 ]
Kruger, Tjaart P. J. [1 ]
机构
[1] Univ Pretoria, Dept Phys, ZA-0028 Pretoria, South Africa
[2] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands
[3] Charles Univ Prague, Inst Phys, Fac Math & Phys, KE Karlovu 5, Prague 12116, Czech Republic
基金
新加坡国家研究基金会; 芬兰科学院;
关键词
SINGLE-MOLECULE FLUORESCENCE; FUNCTIONALIZED GOLD NANORODS; LHCII; PHOTOPROTECTION; CHLOROPHYLLS; MECHANISM; DYNAMICS; ANTENNA; DEVICE; STATES;
D O I
10.1039/c9nr04558a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic coupling of metallic nanoparticles and adjacent pigments can dramatically increase the brightness of the pigments due to the enhanced local electric field. Here, we demonstrate that the fluorescence brightness of a single plant light-harvesting complex (LHCII) can be significantly enhanced when coupled to a gold nanorod (AuNR). The AuNRs utilized in this study were prepared via chemical reactions, and the hybrid system was constructed using a simple and economical spin-assisted layer-by-layer technique. Enhancement of fluorescence brightness of up to 240-fold was observed, accompanied by a 109-fold decrease in the average (amplitude-weighted) fluorescence lifetime from approximately 3.5 ns down to 32 ps, corresponding to an excitation enhancement of 63-fold and emission enhancement of up to 3.8-fold. This large enhancement is due to the strong spectral overlap of the longitudinal localized surface plasmon resonance of the utilized AuNRs and the absorption or emission bands of LHCII. This study provides an inexpensive strategy to explore the fluorescence dynamics of weakly emitting photosynthetic light-harvesting complexes at the single molecule level.
引用
收藏
页码:15139 / 15146
页数:8
相关论文
共 50 条
  • [41] Enhancement of the photocatalytic activity of rhenium(I) complexes by encapsulation in light-harvesting soft nanotubes
    Kameta, Naohiro
    Aoyagi, Masaru
    Asakawa, Masumi
    CHEMICAL COMMUNICATIONS, 2017, 53 (73) : 10116 - 10119
  • [42] Superradiance Transition in Photosynthetic Light-Harvesting Complexes
    Celardo, Giuseppe L.
    Borgonovi, Fausto
    Merkli, Marco
    Tsifrinovich, Vladimir I.
    Berman, Gennady P.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (42): : 22105 - 22111
  • [43] Identifying the quantum correlations in light-harvesting complexes
    Bradler, Kamil
    Wilde, Mark M.
    Vinjanampathy, Sai
    Uskov, Dmitry B.
    PHYSICAL REVIEW A, 2010, 82 (06):
  • [44] PROTEIN ENGINEERING OF BACTERIAL LIGHT-HARVESTING COMPLEXES
    HUNTER, CN
    FOWLER, GJS
    GRIEF, GG
    OLSEN, JD
    JONES, MR
    BIOCHEMICAL SOCIETY TRANSACTIONS, 1993, 21 (01) : 41 - 43
  • [45] Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching
    Emilie Wientjes
    Jan Renger
    Alberto G. Curto
    Richard Cogdell
    Niek F. van Hulst
    Nature Communications, 5
  • [46] STRUCTURE AND FUNCTION OF BACTERIAL LIGHT-HARVESTING COMPLEXES
    KUHLBRANDT, W
    STRUCTURE, 1995, 3 (06) : 521 - 525
  • [48] Excitations and excitons in bacterial light-harvesting complexes
    Monshouwer, R
    vanGrondelle, R
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1996, 1275 (1-2): : 70 - 75
  • [49] Quantum entanglement in photosynthetic light-harvesting complexes
    Sarovar, Mohan
    Ishizaki, Akihito
    Fleming, Graham R.
    Whaley, K. Birgitta
    NATURE PHYSICS, 2010, 6 (06) : 462 - 467
  • [50] PURPLE-BACTERIAL LIGHT-HARVESTING COMPLEXES
    COGDELL, RJ
    BIOCHEMICAL SOCIETY TRANSACTIONS, 1986, 14 (01) : 4 - 5