Two chain rules for divided differences and Faa di Bruno's formula

被引:20
|
作者
Floater, Michael S. [1 ]
Lyche, Tom [1 ]
机构
[1] Univ Oslo, Dept Informat, Ctr Math Applicat, N-0316 Oslo, Norway
关键词
chain rule; divided differences; Faa di Bruno's formula;
D O I
10.1090/S0025-5718-06-01916-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we derive two formulas for divided differences of a function of a function. Both formulas lead to other divided difference formulas, such as reciprocal and quotient rules. The two formulas can also be used to derive Faa di Bruno's formula and other formulas for higher derivatives of composite functions. We also derive a divided difference version of Faa di Bruno's determinant formula.
引用
收藏
页码:867 / 877
页数:11
相关论文
共 41 条
  • [1] Some extensions of Faa di Bruno's formula with divided differences
    Xu, Aimin
    Wang, Chengjing
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (06) : 2047 - 2052
  • [2] On the divided difference form of Faa di Bruno's formula
    Wang, Xing-hua
    Wang, He-yu
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2006, 24 (04) : 553 - 560
  • [3] On the divided difference form of FAA di Bruno's formula
    Department of Mathematics, Zhejiang University, Hangzhou 310028, China
    不详
    不详
    J Comput Math, 2006, 4 (553-560):
  • [4] On the divided difference form of FaA di Bruno's formula II
    Wang, Xinghua
    Xu, Aimin
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2007, 25 (06) : 697 - 704
  • [5] Prehistory of Faa di Bruno's formula
    Craik, ADD
    AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (02): : 119 - 130
  • [6] A DISCRETE FAA DI BRUNO'S FORMULA
    Duarte, Pedro
    Torres, Maria Joana
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2012, 7 (02) : 72 - 83
  • [7] FAA DI BRUNO'S FORMULA AND VOLTERRA SERIES
    Clark, Daniel E.
    Houssineau, Jeremie
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 217 - 219
  • [8] Faa!di Bruno's formula, lattices, and partitions
    Encinas, LH
    del Rey, AM
    Masqué, JM
    DISCRETE APPLIED MATHEMATICS, 2005, 148 (03) : 246 - 255
  • [9] FaA di Bruno's Formula and Modular Forms
    Meguedmi, Djohra
    Sebbar, Ahmed
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (02) : 409 - 435
  • [10] Five interpretations of Faa di Bruno's formula
    Frabetti, Alessandra
    Manchon, Dominique
    FAA DI BRUNO HOPF ALGEBRAS, DYSON-SCHWINGER EQUATIONS, AND LIE-BUTCHER SERIES, 2015, 21 : 91 - 147