On the divided difference form of FaA di Bruno's formula II

被引:0
|
作者
Wang, Xinghua [1 ]
Xu, Aimin [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
关键词
bell polynomial; Faa di Bruno's formula; mixed partial divided difference; multivariate Newton interpolation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the higher divided difference of a composite function f(g(t)) in which g(t) is an s-dimensional vector. By exploiting some properties from mixed partial divided differences and multivariate Newton interpolation, we generalize the divided difference form of Faa di Bruno's formula with a scalar argument. Moreover, a generalized Faa di Bruno's formula with a vector argument is derived.
引用
收藏
页码:697 / 704
页数:8
相关论文
共 50 条
  • [1] On the divided difference form of Faa di Bruno's formula
    Wang, Xing-hua
    Wang, He-yu
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2006, 24 (04) : 553 - 560
  • [2] On the divided difference form of FAA di Bruno's formula
    Department of Mathematics, Zhejiang University, Hangzhou 310028, China
    不详
    不详
    J Comput Math, 2006, 4 (553-560):
  • [3] Some extensions of Faa di Bruno's formula with divided differences
    Xu, Aimin
    Wang, Chengjing
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (06) : 2047 - 2052
  • [4] Two chain rules for divided differences and Faa di Bruno's formula
    Floater, Michael S.
    Lyche, Tom
    MATHEMATICS OF COMPUTATION, 2007, 76 (258) : 867 - 877
  • [5] Prehistory of Faa di Bruno's formula
    Craik, ADD
    AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (02): : 119 - 130
  • [6] A DISCRETE FAA DI BRUNO'S FORMULA
    Duarte, Pedro
    Torres, Maria Joana
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2012, 7 (02) : 72 - 83
  • [7] FAA DI BRUNO'S FORMULA AND VOLTERRA SERIES
    Clark, Daniel E.
    Houssineau, Jeremie
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 217 - 219
  • [8] Faa!di Bruno's formula, lattices, and partitions
    Encinas, LH
    del Rey, AM
    Masqué, JM
    DISCRETE APPLIED MATHEMATICS, 2005, 148 (03) : 246 - 255
  • [9] FaA di Bruno's Formula and Modular Forms
    Meguedmi, Djohra
    Sebbar, Ahmed
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (02) : 409 - 435
  • [10] Five interpretations of Faa di Bruno's formula
    Frabetti, Alessandra
    Manchon, Dominique
    FAA DI BRUNO HOPF ALGEBRAS, DYSON-SCHWINGER EQUATIONS, AND LIE-BUTCHER SERIES, 2015, 21 : 91 - 147