Centroaffine Translation Surfaces in R3

被引:0
|
作者
Yang, Yun [1 ]
Yu, Yanhua [1 ]
Liu, Huili [1 ]
机构
[1] Northeastern Univ, Dept Math, Shenyang 110004, Peoples R China
关键词
Centroaffine differential geometry; translation surface; Gauss curvature; Pick invariant;
D O I
10.1007/s00025-009-0385-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The centroaffine theorema egregium chi = J - n/n-1G(T,T) + 1 is a fundamental scalar identity in the centroaffine differential geometry for non-degenerate hypersurface immersions. Here n is the dimension of the hypersurface, chi the normalized scalar curvature of the centroaffine metric G, J the Pick invariant and T the centroaffine Tchebychev vector field. In this paper we study non-degenerate centroaffine translation surfaces in affine 3-space R-3 where one of the three summands in the centroaffine theorema egregium is constant, and then give the classifications by solving certain partial differential equations.
引用
收藏
页码:197 / 210
页数:14
相关论文
共 50 条
  • [21] The Weierstrass representation of closed surfaces in R3
    Taimanov, IA
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1998, 32 (04) : 258 - 267
  • [22] DEGENERATE HOMOGENEOUS AFFINE SURFACES IN R3
    VRANCKEN, L
    GEOMETRIAE DEDICATA, 1994, 53 (03) : 333 - 351
  • [23] Complete Embedded Harmonic Surfaces in R3
    Connor, Peter
    Li, Kevin
    Weber, Matthias
    EXPERIMENTAL MATHEMATICS, 2015, 24 (02) : 196 - 224
  • [24] RESTRICTION FOR HOMOGENEOUS POLYNOMIAL SURFACES IN R3
    Carbery, A.
    Kenig, C. E.
    Ziesler, S. N.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (05) : 2367 - 2407
  • [25] JACOBI FIELDS TO MINIMAL SURFACES IN R3
    BOHME, R
    MANUSCRIPTA MATHEMATICA, 1975, 16 (01) : 51 - 73
  • [26] PROJECTIONS AND REFLECTIONS OF GENERIC SURFACES IN R3
    BRUCE, JW
    MATHEMATICA SCANDINAVICA, 1984, 54 (02) : 262 - 278
  • [27] Restriction for flat surfaces of revolution in R3
    Carbery, A.
    Kenig, C.
    Ziesler, S.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (06) : 1905 - 1914
  • [28] Self θ-congruent minimal surfaces in R3
    Chen, WH
    Fang, Y
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2000, 69 : 229 - 244
  • [29] Hyperbolic linear weingarten surfaces in R3
    Sanchez, Juan A. Aledo
    Espinar, Jose M.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2007, 38 (02): : 291 - 300
  • [30] THE DYNAMICS THEOREM FOR CMC SURFACES IN R3
    Meeks, William H., III
    Tinaglia, Giuseppe
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2010, 85 (01) : 141 - 173