Centroaffine Translation Surfaces in R3

被引:0
|
作者
Yang, Yun [1 ]
Yu, Yanhua [1 ]
Liu, Huili [1 ]
机构
[1] Northeastern Univ, Dept Math, Shenyang 110004, Peoples R China
关键词
Centroaffine differential geometry; translation surface; Gauss curvature; Pick invariant;
D O I
10.1007/s00025-009-0385-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The centroaffine theorema egregium chi = J - n/n-1G(T,T) + 1 is a fundamental scalar identity in the centroaffine differential geometry for non-degenerate hypersurface immersions. Here n is the dimension of the hypersurface, chi the normalized scalar curvature of the centroaffine metric G, J the Pick invariant and T the centroaffine Tchebychev vector field. In this paper we study non-degenerate centroaffine translation surfaces in affine 3-space R-3 where one of the three summands in the centroaffine theorema egregium is constant, and then give the classifications by solving certain partial differential equations.
引用
收藏
页码:197 / 210
页数:14
相关论文
共 50 条
  • [1] Linear Weingarten centroaffine translation surfaces in R3
    Yang, Yun
    Yu, Yanhua
    Liu, Huili
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (02) : 458 - 466
  • [2] Centroaffine ruled surfaces in R3
    Yu, Yanhua
    Yang, Yun
    Liu, Huili
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (02) : 683 - 693
  • [3] Centroaffine geometry of equiaffine rotation surfaces in R3
    Yang, Yun
    Yu, Yanhua
    Liu, Huili
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 414 (01) : 46 - 60
  • [4] SURFACES IN R3
    SZUCS, A
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 : 60 - 66
  • [5] Complete λ-surfaces in R3
    Cheng, Qing-Ming
    Wei, Guoxin
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (01)
  • [6] REVOLUTION SURFACES IN R3
    BERARD, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (03): : 159 - 161
  • [7] Nonpositively curved surfaces in R3
    Chan, H
    Treibergs, A
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2001, 57 (03) : 389 - 407
  • [8] Laguerre Geometry of Surfaces in R3
    Tong Zhu Li
    Acta Mathematica Sinica, 2005, 21 : 1525 - 1534
  • [9] Linear Weingarten surfaces in R3
    Gálvez, JA
    Martínez, A
    Milán, F
    MONATSHEFTE FUR MATHEMATIK, 2003, 138 (02): : 133 - 144
  • [10] Laguerre homogeneous surfaces in R3
    LI TongZhu Department of Mathematics
    Science China Mathematics, 2012, 55 (06) : 1197 - 1214