Classification of EEG signals using the wavelet transform

被引:207
|
作者
Hazarika, N
Chen, JZ
Tsoi, AC
Sergejew, A
机构
[1] UNIV QUEENSLAND,DEPT ELECT & COMP ENGN,ST LUCIA,QLD 4072,AUSTRALIA
[2] UNIV WOLLONGONG,FAC INFORMAT,WOLLONGONG,NSW 2522,AUSTRALIA
[3] SWINBURNE UNIV TECHNOL,CTR APPL NEUROSCI,HAWTHORN,VIC 3122,AUSTRALIA
[4] SWINBURNE UNIV TECHNOL,SCH BIOPHYS SCI & ELECT ENGN,HAWTHORN,VIC 3122,AUSTRALIA
关键词
EEG classification; neural networks; wavelet transform;
D O I
10.1016/S0165-1684(97)00038-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The electroencephalogram (EEG) is widely used clinically to investigate brain disorders. However, abnormalities in the EEG in serious psychiatric disorders are at times too subtle to be detected using conventional techniques. This paper describes the application of an artificial neural network (ANN) technique together with a feature extraction technique, viz., the wavelet transform, for the classification of EEG signals. The data reduction and preprocessing operations of signals are performed using the wavelet transform. Three classes of EEG signals were used: Normal, Schizophrenia (SCH), and Obsessive Compulsive Disorder (OCD). The architecture of the artificial neural network used in the classification is a three-layered feedforward network which implements the backpropagation of error learning algorithm. After training, the network with wavelet coefficients was able to correctly classify over 66% of the normal class and 71% of the schizophrenia class of EEGs, respectively. The wavelet transform thus provides a potentially powerful technique for preprocessing EEG signals prior to classification. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 50 条
  • [41] Classification of mental task EEG signals using wavelet packet entropy and SVM
    Li Zhiwei
    Shen Minfen
    [J]. ICEMI 2007: PROCEEDINGS OF 2007 8TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOL III, 2007, : 906 - +
  • [42] Classification of EEG Signals Using Empirical Mode Decomposition and Lifting Wavelet Transforms
    Sokhal, Jatin
    Aggarwal, Shubham
    Garg, Bindu
    Jain, Rachna
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND AUTOMATION (ICCCA), 2017, : 1197 - 1202
  • [43] Classification of EEG Signals Using Relative Wavelet Energy and Artificial Neural Networks
    Guo, Ling
    Rivero, Daniel
    Seoane, Jose A.
    Pazos, Alejandro
    [J]. WORLD SUMMIT ON GENETIC AND EVOLUTIONARY COMPUTATION (GEC 09), 2009, : 177 - 183
  • [44] Classification of EEG Signals Using Fractional Calculus and Wavelet Support Vector Machine
    Aaruni, V. C.
    Harsha, A.
    Joseph, Liza Annie
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, INFORMATICS, COMMUNICATION AND ENERGY SYSTEMS (SPICES), 2015,
  • [45] Classification of Working Memory Load Using Wavelet Complexity Features of EEG Signals
    Zarjam, Pega
    Epps, Julien
    Chen, Fang
    Lovell, Nigel H.
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2012, PT II, 2012, 7664 : 692 - 699
  • [46] Combining Spatial Filtering and Wavelet Transform for Classifying Human Emotions Using EEG Signals
    Murugappan, Murugappan
    Nagarajan, Ramachandran
    Yaacob, Sazali
    [J]. JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2011, 31 (01) : 45 - 51
  • [47] Improving the separability of drowsiness and alert EEG signals using analytic form of wavelet transform
    Sharma, Sachin
    Khare, Smith K.
    Bajaj, Varun
    Ansari, Irshad Ahmad
    [J]. APPLIED ACOUSTICS, 2021, 181
  • [48] A novel approach for automated detection of focal EEG signals using empirical wavelet transform
    Bhattacharyya, Abhijit
    Sharma, Manish
    Pachori, Ram Bilas
    Sircar, Pradip
    Acharya, U. Rajendra
    [J]. NEURAL COMPUTING & APPLICATIONS, 2018, 29 (08): : 47 - 57
  • [49] Wavelet based classification of epileptic seizures in EEG signals
    Tzimourta, Katerina D.
    Astrakas, Loukas G.
    Tsipouras, Markos G.
    Giannakeas, Nikolaos
    Tzallas, Alexandros T.
    Konitsiotis, Spyridon
    [J]. 2017 IEEE 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2017, : 35 - 39
  • [50] EEG Signals Denoising Using Optimal Wavelet Transform Hybridized With Efficient Metaheuristic Methods
    Alyasseri, Zaid Abdi Alkareem
    Khader, Ahamad Tajudin
    Al-Betar, Mohammed Azmi
    Abasi, Ammar Kamal
    Makhadmeh, Sharif Naser
    [J]. IEEE ACCESS, 2020, 8 : 10584 - 10605