Is explainable artificial intelligence intrinsically valuable?

被引:12
|
作者
Colaner, Nathan [1 ]
机构
[1] Seattle Univ, Dept Management, Seattle, WA 98122 USA
关键词
Explainable; XAI; Fairness; Value; Intrinsic; Dignity; DECISION-MAKING; PRIVACY;
D O I
10.1007/s00146-021-01184-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There is general consensus that explainable artificial intelligence ("XAI") is valuable, but there is significant divergence when we try to articulate why, exactly, it is desirable. This question must be distinguished from two other kinds of questions asked in the XAI literature that are sometimes asked and addressed simultaneously. The first and most obvious is the 'how' question-some version of: 'how do we develop technical strategies to achieve XAI?' Another question is specifying what kind of explanation is worth having in the first place. As difficult and important as the challenges are in answering these questions, they are distinct from a third question: why do we want XAI at all? There is vast literature on this question as well, but I wish to explore a different kind of answer. The most obvious way to answer this question is by describing a desirable outcome that would likely be achieved with the right kind of explanation, which would make the explanation valuable instrumentally. That is, XAI is desirable to attain some other value, such as fairness, trust, accountability, or governance. This family of arguments is obviously important, but I argue that explanations are also intrinsically valuable, because unexplainable systems can be dehumanizing. I argue that there are at least three independently valid versions of this kind of argument: an argument from participation, from knowledge, and from actualization. Each of these arguments that XAI is intrinsically valuable is independently compelling, in addition to the more obvious instrumental benefits of XAI.
引用
下载
收藏
页码:231 / 238
页数:8
相关论文
共 50 条
  • [41] Explainable Artificial Intelligence in CyberSecurity: A Survey
    Capuano, Nicola
    Fenza, Giuseppe
    Loia, Vincenzo
    Stanzione, Claudio
    IEEE ACCESS, 2022, 10 : 93575 - 93600
  • [42] Explainable Artificial Intelligence as an Ethical Principle
    Gonzalez-Arencibia, Mario
    Ordonez-Erazo, Hugo
    Gonzalez-Sanabria, Juan-Sebastian
    INGENIERIA, 2024, 29 (02):
  • [43] Explainable Artificial Intelligence: Point and Counterpoint
    Knox, Andrew T.
    Khakoo, Yasmin
    Gombolay, Grace
    PEDIATRIC NEUROLOGY, 2023, 148 : 54 - 55
  • [44] Explainable Artificial Intelligence for Training and Tutoring
    Lane, H. Chad
    Core, Mark G.
    van Lent, Michael
    Solomon, Steve
    Gomboc, Dave
    ARTIFICIAL INTELLIGENCE IN EDUCATION: SUPPORTING LEARNING THROUGH INTELLIGENT AND SOCIALLY INFORMED TECHNOLOGY, 2005, 125 : 762 - 764
  • [45] A historical perspective of explainable Artificial Intelligence
    Confalonieri, Roberto
    Coba, Ludovik
    Wagner, Benedikt
    Besold, Tarek R.
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 11 (01)
  • [46] xxAI - Beyond Explainable Artificial Intelligence
    Holzinger, Andreas
    Goebel, Randy
    Fong, Ruth
    Moon, Taesup
    Mueller, Klaus-Robert
    Samek, Wojciech
    XXAI - BEYOND EXPLAINABLE AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers, 2022, 13200 : 3 - 10
  • [47] Explainable Artificial Intelligence (XAI) in auditing
    Zhang, Chanyuan
    Cho, Soohyun
    Vasarhelyi, Miklos
    INTERNATIONAL JOURNAL OF ACCOUNTING INFORMATION SYSTEMS, 2022, 46
  • [48] Argumentation and explainable artificial intelligence: a survey
    Vassiliades, Alexandros
    Bassiliades, Nick
    Patkos, Theodore
    KNOWLEDGE ENGINEERING REVIEW, 2021, 36
  • [49] Editorial: From Explainable Artificial Intelligence (xAI) to Understandable Artificial Intelligence (uAI)
    Abbass, Hussein
    Crockett, Keeley
    Garibaldi, Jonathan
    Gegov, Alexander
    Kaymak, Uzay
    Sousa, Joao Miguel C.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (09): : 4310 - 4314
  • [50] Explainable artificial intelligence for pharmacovigilance: What features are important when predicting adverse outcomes? Explainable artificial intelligence for pharmacovigilance
    Ward, Isaac Ronald
    Wang, Ling
    Lu, Juan
    Bennamoun, Mohammed
    Dwivedi, Girish
    Sanfilippo, Frank M
    Computer Methods and Programs in Biomedicine, 2021, 212