Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning

被引:58
|
作者
Pourshamsi, Maryam [1 ,7 ]
Xia, Junshi [2 ]
Yokoya, Naoto [2 ]
Garcia, Mariano [3 ]
Lavalle, Marco [4 ]
Pottier, Eric [5 ]
Balzter, Heiko [1 ,6 ]
机构
[1] Univ Leicester, Sch Geog Geol & Environm, Univ Rd, Leicester LE1 7RH, Leics, England
[2] RIKEN, Geoinformat Unit, Ctr Adv Intelligence Project AIP, Wako, Saitama, Japan
[3] Univ Alcala, Dept Geol Geog & Environm, Madrid 28801, Spain
[4] CALTECH, NASA, Jet Prop Lab, Pasadena, CA USA
[5] Univ Rennes 1, Inst Elect & Telecommun Rennes, Rennes, France
[6] Univ Leicester, Natl Ctr Earth Observat, Univ Rd, Leicester LE1 7RH, Leics, England
[7] Airbus Def & Space, 60 Priestley Rd, Guildford GU2 7AG, Surrey, England
基金
英国工程与自然科学研究理事会;
关键词
Polarimetric synthetic aperture radar (PolSAR); LiDAR; L-band; Forest height; Machine learning; AIRBORNE LIDAR; IMAGERY; RADAR; DECOMPOSITION; POLINSAR;
D O I
10.1016/j.isprsjprs.2020.11.008
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Forest height is an important forest biophysical parameter which is used to derive important information about forest ecosystems, such as forest above ground biomass. In this paper, the potential of combining Polarimetric Synthetic Aperture Radar (PolSAR) variables with LiDAR measurements for forest height estimation is investigated. This will be conducted using different machine learning algorithms including Random Forest (RFs), Rotation Forest (RoFs), Canonical Correlation Forest (CCFs) and Support Vector Machine (SVMs). Various PolSAR parameters are required as input variables to ensure a successful height retrieval across different forest heights ranges. The algorithms are trained with 5000 LiDAR samples (less than 1% of the full scene) and different polarimetric variables. To examine the dependency of the algorithm on input training samples, three different subsets are identified which each includes different features: subset 1 is quiet diverse and includes non-vegetated region, short/sparse vegetation (0-20 m), vegetation with mid-range height (20-40 m) to tall/dense ones (40-60 m); subset 2 covers mostly the dense vegetated area with height ranges 40-60 m; and subset 3 mostly covers the non-vegetated to short/sparse vegetation (0-20 m) .The trained algorithms were used to estimate the height for the areas outside the identified subset. The results were validated with independent samples of LiDAR-derived height showing high accuracy (with the average R-2 = 0.70 and RMSE = 10 m between all the algorithms and different training samples). The results confirm that it is possible to estimate forest canopy height using Po1SAR parameters together with a small coverage of LiDAR height as training data.
引用
收藏
页码:79 / 94
页数:16
相关论文
共 50 条
  • [1] MACHINE-LEARNING FUSION OF POLSAR AND LIDAR DATA FOR TROPICAL FOREST CANOPY HEIGHT ESTIMATION
    Pourshamsi, Maryam
    Garcia, Mariano
    Lavalle, Marco
    Pottier, Eric
    Balzter, Heiko
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8108 - 8111
  • [2] A Machine-Learning Approach to PolInSAR and LiDAR Data Fusion for Improved Tropical Forest Canopy Height Estimation Using NASA AfriSAR Campaign Data
    Pourshamsi, Maryam
    Garcia, Mariano
    Lavalle, Marco
    Balzter, Heiko
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (10) : 3453 - 3463
  • [3] Uncertainties in Forest Canopy Height Estimation From Polarimetric Interferometric SAR Data
    Riel, Bryan
    Denbina, Michael
    Lavalle, Marco
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (10) : 3478 - 3491
  • [4] DEEP LEARNING FOR FOREST CANOPY HEIGHT ESTIMATION FROM SAR
    Mahesh, Ragini Bal
    Haensch, Ronny
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5672 - 5675
  • [5] A Machine-Learning Approach to PolInSAR and LiDAR Data Fusion for Improved Tropical Forest Canopy Height Estimation Using NASA AfriSAR Campaign Data (vol 11, pg 3453, 2019)
    Pourshamsi, Maryam
    Garcia, Mariano
    Lavalle, Marco
    Balzter, Heiko
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 566 - 566
  • [6] FOREST CANOPY HEIGHT ESTIMATION FROM CALIPSO LIDAR MEASUREMENT
    Lu, Xiaomei
    Hu, Yongxiang
    Lucker, Patricia L.
    Trepte, Charles
    [J]. 27TH INTERNATIONAL LASER RADAR CONFERENCE (ILRC 27), 2016, 119
  • [7] SAR RADARGRAMMETRY AND SCANNING LIDAR IN PREDICTING FOREST CANOPY HEIGHT
    Vastaranta, Mikko
    Holopainen, Markus
    Karjalainen, Mika
    Kankare, Ville
    Hyyppa, Juha
    Kaasalainen, Sanna
    Hyyppa, Hannu
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6515 - 6518
  • [8] Predicting the Forest Canopy Height from LiDAR and Multi-Sensor Data Using Machine Learning over India
    Ghosh, Sujit M.
    Behera, Mukunda D.
    Kumar, Subham
    Das, Pulakesh
    Prakash, Ambadipudi J.
    Bhaskaran, Prasad K.
    Roy, Parth S.
    Barik, Saroj K.
    Jeganathan, Chockalingam
    Srivastava, Prashant K.
    Behera, Soumit K.
    [J]. REMOTE SENSING, 2022, 14 (23)
  • [9] Estimation of Airborne Lidar-Derived Tropical Forest Canopy Height Using Landsat Time Series in Cambodia
    Ota, Tetsuji
    Ahmed, Oumer S.
    Franklin, Steven E.
    Wulder, Michael A.
    Kajisa, Tsuyoshi
    Mizoue, Nobuya
    Yoshida, Shigejiro
    Takao, Gen
    Hirata, Yasumasa
    Furuya, Naoyuki
    Sano, Takio
    Heng, Sokh
    Vuthy, Ma
    [J]. REMOTE SENSING, 2014, 6 (11) : 10750 - 10772
  • [10] UNCERTAINTIES ANALYSIS IN FOREST HEIGHT ESTIMATION USING POLARIMETRIC INTERFEROMETRIC SAR DATA
    Zhang, Wangfei
    Zhang, Tingwei
    Zhao, Han
    Zhang, Yongxin
    Chen, Erxue
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6142 - 6145