SAR RADARGRAMMETRY AND SCANNING LIDAR IN PREDICTING FOREST CANOPY HEIGHT

被引:6
|
作者
Vastaranta, Mikko [1 ]
Holopainen, Markus [1 ]
Karjalainen, Mika [2 ]
Kankare, Ville [1 ]
Hyyppa, Juha [2 ]
Kaasalainen, Sanna [2 ]
Hyyppa, Hannu [3 ,4 ]
机构
[1] Univ Helsinki, Dept Forest Sci, FIN-00014 Helsinki, Finland
[2] Finnish Geodet Inst, Masala 02430, Finland
[3] Aalto Univ, Espoo, Finland
[4] Helsinki Metropolia Univ Appl Sci, Helsinki, Finland
关键词
Forestry; laser scanning; mapping; monitoring;
D O I
10.1109/IGARSS.2012.6352752
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Our objective was to evaluate the accuracy of estimating forest canopy height when using scanning LiDAR and TerraSAR-X stereo radargrammetry. The study area was located in southern Finland. We used SAR radargrammetry and LiDAR to extract 3D point clouds to derive predictors used in the non-parametric prediction of forest canopy height. We used tree-wise measured field plots (n=110) as reference data. Our results showed that with SAR radargrammetry, the relative RMSE for forest canopy height was 12.2% whereas it was 8.1% with LiDAR. We concluded that SAR radargrammetry is a promising remote-sensing method for predicting forest canopy height when an accurate digital terrain model is available.
引用
收藏
页码:6515 / 6518
页数:4
相关论文
共 50 条
  • [1] TerraSAR-X Stereo Radargrammetry and Airborne Scanning LiDAR Height Metrics in Imputation of Forest Aboveground Biomass and Stem Volume
    Vastaranta, Mikko
    Holopainen, Markus
    Karjalainen, Mika
    Kankare, Ville
    Hyyppa, Juha
    Kaasalainen, Sanna
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (02): : 1197 - 1204
  • [2] Mapping forest canopy height globally with spaceborne lidar
    Simard, Marc
    Pinto, Naiara
    Fisher, Joshua B.
    Baccini, Alessandro
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2011, 116
  • [3] Mapping Boreal Forest Species and Canopy Height using Airborne SAR and Lidar Data in Interior Alaska
    Zhao, Yuhuan
    Chen, Richard H.
    Bakian-Dogaheh, Kazem
    Whitcomb, Jane
    Yi, Yonghong
    Kimball, John S.
    Moghaddam, Mahta
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4955 - 4958
  • [4] FOREST CANOPY HEIGHT ESTIMATION FROM CALIPSO LIDAR MEASUREMENT
    Lu, Xiaomei
    Hu, Yongxiang
    Lucker, Patricia L.
    Trepte, Charles
    [J]. 27TH INTERNATIONAL LASER RADAR CONFERENCE (ILRC 27), 2016, 119
  • [5] Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning
    Pourshamsi, Maryam
    Xia, Junshi
    Yokoya, Naoto
    Garcia, Mariano
    Lavalle, Marco
    Pottier, Eric
    Balzter, Heiko
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 172 : 79 - 94
  • [6] DEEP LEARNING FOR FOREST CANOPY HEIGHT ESTIMATION FROM SAR
    Mahesh, Ragini Bal
    Haensch, Ronny
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5672 - 5675
  • [8] Forest canopy height variation in relation to topography and forest types in central Japan with LiDAR
    Rahman, Md Farhadur
    Onoda, Yusuke
    Kitajima, Kaoru
    [J]. FOREST ECOLOGY AND MANAGEMENT, 2022, 503
  • [9] Exploring the Relationship between Forest Canopy Height and Canopy Density from Spaceborne LiDAR Observations
    Kay, Heather
    Santoro, Maurizio
    Cartus, Oliver
    Bunting, Pete
    Lucas, Richard
    [J]. REMOTE SENSING, 2021, 13 (24)
  • [10] Predicting forest stand characteristics with airborne scanning lidar
    Means, JE
    Acker, SA
    Fitt, BJ
    Renslow, M
    Emerson, L
    Hendrix, CJ
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2000, 66 (11): : 1367 - 1371