Elastomeric Haptic Devices for Virtual and Augmented Reality

被引:60
|
作者
Bai, Hedan [1 ]
Li, Shuo [2 ]
Shepherd, Robert F. [1 ,2 ]
机构
[1] Cornell Univ, Sibley Sch Mech & Aerosp Engn, 124 Hoy Rd, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Mat Sci & Engn, 4 Cent Ave, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
augmented reality; haptics; soft robotics; virtual reality; PNEUMATIC ACTUATOR; TACTILE DISPLAY; SOFT ROBOTICS; SHAPE-MEMORY; SENSORS; SKIN; FABRICATION; PERCEPTION; POLYMER; GLOVE;
D O I
10.1002/adfm.202009364
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Since the modern concepts for virtual and augmented reality are first introduced in the 1960's, the field has strived to develop technologies for immersive user experience in a fully or partially virtual environment. Despite the great progress in visual and auditory technologies, haptics has seen much slower technological advances. The challenge is because skin has densely packed mechanoreceptors distributed over a very large area with complex topography; devising an apparatus as targeted as an audio speaker or television for the localized sensory input of an ear canal or iris is more difficult. Furthermore, the soft and sensitive nature of the skin makes it difficult to apply solid state electronic solutions that can address large areas without causing discomfort. The maturing field of soft robotics offers potential solutions toward this challenge. In this article, the definition and history of virtual (VR) and augmented reality (AR) is first reviewed. Then an overview of haptic output and input technologies is presented, opportunities for soft robotics are identified, and mechanisms of intrinsically soft actuators and sensors are introduced. Finally, soft haptic output and input devices are reviewed with categorization by device forms, and examples of soft haptic devices in VR/AR environments are presented.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Translation and Rotation of virtual Objects in Augmented Reality: A Comparison of Interaction Devices
    Reifinger, Stefan
    Laquai, Florian
    Rigoll, Gerhard
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 2447 - 2452
  • [22] Reality Media: Augmented and Virtual Reality
    Murphy, Dooley
    NEW MEDIA & SOCIETY, 2022, 24 (09) : 2181 - 2183
  • [23] LAW, VIRTUAL REALITY, AND AUGMENTED REALITY
    Lemley, Mark A.
    Volokh, Eugene
    UNIVERSITY OF PENNSYLVANIA LAW REVIEW, 2018, 166 (05) : 1051 - 1138
  • [24] Augmented Reality und Virtual Reality
    Matthias Knoll
    Stefan Stieglitz
    HMD Praxis der Wirtschaftsinformatik, 2022, 59 (1) : 1 - 5
  • [25] Augmented Reality Based Virtual Reality
    Raajan, N. R.
    Suganya, S.
    Priya, M. V.
    Ramanan, Sruthi V.
    Janani, S.
    Nandini, N. S. Sarada
    Hemanand, R.
    Gayathri, S.
    INTERNATIONAL CONFERENCE ON MODELLING OPTIMIZATION AND COMPUTING, 2012, 38 : 1559 - 1565
  • [26] Virtual Reality and Augmented Reality in Education
    Bazavan, Lidia-Cristina
    Roibu, Horatiu
    Besnea, Florina
    Cismaru, Stefan Irinel
    George, Bizdoaca Nicu
    PROCEEDINGS OF THE 2021 30TH ANNUAL CONFERENCE OF THE EUROPEAN ASSOCIATION FOR EDUCATION IN ELECTRICAL AND INFORMATION ENGINEERING (EAEEIE), 2021, : 82 - 85
  • [27] Multimedia in Virtual Reality and Augmented Reality
    Chen, Shu-Ching
    IEEE MULTIMEDIA, 2021, 28 (02) : 5 - 7
  • [28] Cybersickness in Virtual Reality and Augmented Reality
    Lawson, Ben D.
    Stanney, Kay M.
    FRONTIERS IN VIRTUAL REALITY, 2021, 2
  • [29] Real Stiffness Augmentation for Haptic Augmented Reality
    Jeon, Seokhee
    Choi, Seungmoon
    PRESENCE-VIRTUAL AND AUGMENTED REALITY, 2011, 20 (04): : 337 - 370
  • [30] A Survey on Haptic Technologies for Mobile Augmented Reality
    Bermejo, Carlos
    Hui, Pan
    ACM COMPUTING SURVEYS, 2022, 54 (09)