The sharp quantitative Sobolev inequality for functions of bounded variation

被引:35
|
作者
Fusco, N.
Maggi, F.
Pratelli, A.
机构
[1] Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
[2] Dipartimento Matemat, I-50134 Florence, Italy
[3] Dipartimento Matemat, I-27100 Pavia, Italy
关键词
Sobolev inequality; BV functions; sharp estimate; isoperimetric inequality;
D O I
10.1016/j.jfa.2006.10.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical Sobolev embedding theorem of the space of functions of bounded variation BV(R-n) into L-n' (R-n) is proved in a sharp quantitative form. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:315 / 341
页数:27
相关论文
共 50 条
  • [41] The sharp quantitative isoperimetric inequality
    Fusco, N.
    Maggi, F.
    Pratelli, A.
    ANNALS OF MATHEMATICS, 2008, 168 (03) : 941 - 980
  • [42] Sobolev’s Inequality for Musielak–Orlicz–Sobolev Functions
    Yoshihiro Mizuta
    Takao Ohno
    Tetsu Shimomura
    Results in Mathematics, 2023, 78
  • [43] SOBOLEV SUBSPACES OF NOWHERE BOUNDED FUNCTIONS
    Lamberti, Pier Domenico
    Stefani, Giorgio
    REAL ANALYSIS EXCHANGE, 2016, 41 (02) : 367 - 376
  • [44] SOME PERTURBED VERSIONS OF THE GENERALIZED TRAPEZOID INEQUALITY FOR FUNCTIONS OF BOUNDED VARIATION
    Liu, Wenjun
    Park, Jaekeun
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (01) : 11 - 18
  • [45] On the generalization of Trapezoid Inequality for functions of two variables with bounded variation and applications
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2015, 7 (01): : 77 - 85
  • [46] Sharp Sobolev inequality involving a critical nonlinearity on a boundary
    Chabrowski, J
    Yang, JF
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2005, 25 (01) : 135 - 153
  • [47] Sharp reversed Hardy–Littlewood–Sobolev inequality on Rn
    Quốc Anh Ngô
    Van Hoang Nguyen
    Israel Journal of Mathematics, 2017, 220 : 189 - 223
  • [48] The sharp convex mixed Lorentz-Sobolev inequality
    Fang, Niufa
    Xu, Wenxue
    Zhou, Jiazu
    Zhu, Baocheng
    ADVANCES IN APPLIED MATHEMATICS, 2019, 111
  • [49] Inversion positivity and the sharp Hardy–Littlewood–Sobolev inequality
    Rupert L. Frank
    Elliott H. Lieb
    Calculus of Variations and Partial Differential Equations, 2010, 39 : 85 - 99
  • [50] SHARP INEQUALITY FOR BOUNDED SUBMARTINGALES AND THEIR DIFFERENTIAL SUBORDINATES
    Osekowski, Adam
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 : 660 - 675