Critical periodic traveling waves for a periodic and diffusive epidemic model

被引:7
|
作者
Zhang, Liang [1 ]
Wang, Shuang-Ming [1 ,2 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou, Gansu, Peoples R China
[2] Lanzhou Univ Finance & Econ, Sch Informat Engn, Lanzhou, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Periodic traveling wave solutions; critical speed; time periodic and diffusive; epidemic model; SIR MODEL; SPEED; PROPAGATION; DISPERSAL;
D O I
10.1080/00036811.2019.1677894
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to the existence of time periodic traveling wave solutions with critical speed for a seasonal and diffusive epidemic model. We adopt the approach of super- and sub-solutions and Schauder's fixed point theorem to the truncated problem combined with limiting arguments to obtain the existence of critical periodic traveling waves. This would be appropriate for the modification versions of current model, where standard incidence is replaced by other nonlinear incidence.
引用
收藏
页码:2108 / 2121
页数:14
相关论文
共 50 条
  • [31] Traveling waves for epidemic models with nonlocal dispersal in time and space periodic habitats
    Bao, Xiongxiong
    Liu, Jia
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (07) : 2404 - 2413
  • [32] Diffusive transport of waves in a periodic waveguide
    Barra, Felipe
    Pagneux, Vincent
    Zuniga, Jaime
    [J]. PHYSICAL REVIEW E, 2012, 85 (01)
  • [33] Spontaneous Infection and Periodic Evolving of Domain in a Diffusive SIS Epidemic Model
    Qiang Wen
    Guo-qiang Ren
    Bin Liu
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2024, 40 : 164 - 191
  • [34] Spontaneous Infection and Periodic Evolving of Domain in a Diffusive SIS Epidemic Model
    Qiang WEN
    Guo-qiang REN
    Bin LIU
    [J]. Acta Mathematicae Applicatae Sinica, 2024, 40 (01) : 164 - 191
  • [35] Spontaneous Infection and Periodic Evolving of Domain in a Diffusive SIS Epidemic Model
    Wen, Qiang
    Ren, Guo-qiang
    Liu, Bin
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (01): : 164 - 191
  • [36] Traveling waves for a diffusive mosquito-borne epidemic model with general incidence
    Kai Wang
    Hongyong Zhao
    Hao Wang
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [37] Traveling waves for a diffusive SEIR epidemic model with non-local reaction
    Tian, Baochuan
    Yuan, Rong
    [J]. APPLIED MATHEMATICAL MODELLING, 2017, 50 : 432 - 449
  • [38] Global dynamics and traveling waves for a diffusive SEIVS epidemic model with distributed delays
    Wang, Lianwen
    Wang, Xingyu
    Liu, Zhijun
    Wang, Yating
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 128
  • [39] Traveling waves for a diffusive mosquito-borne epidemic model with general incidence
    Wang, Kai
    Zhao, Hongyong
    Wang, Hao
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (01):
  • [40] Time periodic traveling wave solutions of a time-periodic reaction-diffusion SEIR epidemic model with periodic recruitment
    Zhao, Lin
    Liu, Yini
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 81