Spontaneous Polymerization of Glycine under Hydrothermal Conditions

被引:13
|
作者
Pedreira-Segade, Ulysse [1 ,2 ]
Hao, Jihua [1 ]
Montagnac, Gilles [1 ]
Cardon, Herve [1 ]
Daniel, Isabelle [1 ]
机构
[1] Univ Lyon 1, Univ Lyon, Ens Lyon, CNRS,UMR,LGL TPE 5276, F-69342 Lyon, France
[2] Rensselaer Polytech Inst, Dept Earth & Environm Sci, 110 Eighth St, Troy, NY 12180 USA
来源
ACS EARTH AND SPACE CHEMISTRY | 2019年 / 3卷 / 08期
关键词
Origins of life; glycine polymerization; in situ Raman spectroscopy; diamond anvil cell; hydrothermal conditions; DIAMOND-ANVIL CELL; AMINO-ACIDS; CHEMICAL EVOLUTION; PEPTIDE-SYNTHESIS; MINERAL SURFACES; RAMAN-SPECTRA; HIGH-PRESSURE; ICE ANALOGS; WATER; ALANINE;
D O I
10.1021/acsearthspacechem.9b00043
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The abiotic polymerization of nucleotides and amino acids is a prerequisite for the emergence of life. It has been proposed that hydrothermal conditions might favor the polymerization of amino acids. In the present study, we analyzed by in situ Raman spectroscopy in a diamond anvil cell the fate of the simplest and most abundant amino acid, glycine, under hydrothermal conditions at 200 degrees C and pressures ranging between 50 and 3500 MPa. We also tested the effect of magnetite on the reactivity of glycine. The polymerization of glycine is highly favored under pressure and in the presence of magnetite. Linear dimers are more abundant than the cyclic ones up to a threshold pressure of 500 MPa. Above 800 MPa, amino acids stop reacting and the system is "frozen". Our findings suggest that pressure and mineral-water interface strongly favor the formation of linear peptides. The optimum conditions for polymerization obtained in the present study suggest that the prebiotic chemical evolution of amino acids was not restricted to hydrothermal vents at oceanic ridges but might also occur much deeper in the first 15-30 km of the crust, widely expanding the prebiotic reactive zone.
引用
收藏
页码:1669 / 1677
页数:17
相关论文
共 50 条
  • [21] Crystallization of zirconia under hydrothermal conditions
    Bucko, Miroslaw M.
    Haberko, Krzysztof
    Faryna, Marek
    Journal of the American Ceramic Society, 1995, 78 (12): : 3397 - 3400
  • [22] TRANSFORMATIONS OF NATROLITE UNDER HYDROTHERMAL CONDITIONS
    MAIER, AA
    VARSHAL, BG
    MANUILOVA, NS
    DOKLADY AKADEMII NAUK SSSR, 1964, 154 (02): : 363 - &
  • [23] Intercalation of kaolinite under hydrothermal conditions
    Vempati, RK
    Mollah, MYA
    Reddy, GR
    Cocke, DL
    Lauer, HV
    JOURNAL OF MATERIALS SCIENCE, 1996, 31 (05) : 1255 - 1259
  • [24] Stability of fullerenes under hydrothermal conditions
    Wojciech L. Suchanek
    Masahiro Yoshimura
    Yury G. Gogotsi
    Journal of Materials Research, 1999, 14 : 323 - 326
  • [25] ON TRANSFORMATIONS OF NATROLITE UNDER HYDROTHERMAL CONDITIONS
    SENDEROV, EE
    YUKHNEVI.GV
    GEOCHEMISTRY INTERNATIONAL USSR, 1964, (06): : 1121 - &
  • [26] Organic chemistry under hydrothermal conditions
    Avola, Sabine
    Guillot, Marie
    da Silva-Perez, Denilson
    Pellet-Rostaing, Stephane
    Kunz, Werner
    Goettmann, Frederic
    PURE AND APPLIED CHEMISTRY, 2013, 85 (01) : 89 - 103
  • [27] PMMA stability under hydrothermal conditions
    Fernandez, Ana
    Redondo, Aranzazu
    Martin-de-Leon, Judith
    Cantero, Danilo
    JOURNAL OF SUPERCRITICAL FLUIDS, 2023, 198
  • [28] FORMATION OF SCAWTITE UNDER HYDROTHERMAL CONDITIONS
    STEVULA, L
    PETROVIC, J
    SILIKATY, 1982, 26 (02): : 137 - &
  • [29] Crystallization of zirconia under hydrothermal conditions
    Bucko, MM
    Haberko, K
    Faryna, M
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1995, 78 (12) : 3397 - 3400
  • [30] Stability of fullerenes under hydrothermal conditions
    Suchanek, WL
    Yoshimura, M
    Gogotsi, YG
    JOURNAL OF MATERIALS RESEARCH, 1999, 14 (02) : 323 - 326