Complex hyperbolic Fenchel-Nielsen coordinates

被引:30
|
作者
Parker, John R. [1 ]
Platis, Ioannis D. [1 ]
机构
[1] Univ Durham, Dept Math Sci, Durham, England
关键词
Complex hyperbolic geometry; Fenchel-Nielsen coordinates; Cross-ratio;
D O I
10.1016/j.top.2007.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Sigma be a closed, orientable surface of genus g. It is known that the SU(2, 1) representation variety of pi(1)(Sigma) has 2g - 3 components of (real) dimension 16g - 16 and two components of dimension 8g - 6. Of special interest are the totally loxodromic, faithful (that is quasi-Fuchsian) representations. In this paper we give global real analytic coordinates on a subset of the representation variety that contains the quasi-Fuchsian representations. These coordinates are a natural generalisation of Fenchel-Nielsen coordinates on the Teichmuller space of Sigma and complex Fenchel - Nielsen coordinates on the (classical) quasi-Fuchsian space of Sigma. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:101 / 135
页数:35
相关论文
共 50 条
  • [41] Hyperbolic barycentric coordinates and applications
    Bensad, Alaa Eddine
    Ikemakhen, Aziz
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2022, 95
  • [42] HYPERBOLIC GRIDS AND TM COORDINATES
    SHMUTTER, B
    [J]. CANADIAN SURVEYOR-GEOMETRE CANADIEN, 1984, 38 (03): : 209 - 216
  • [43] Euclidean Properties of Hyperbolic Polar Coordinates
    William Ma
    David Minda
    [J]. Computational Methods and Function Theory, 2006, 6 (1) : 223 - 242
  • [44] CONSTRUCTION OF CIRCULAR NOMOGRAPHS WITH HYPERBOLIC COORDINATES
    BURROWS, WH
    [J]. INDUSTRIAL AND ENGINEERING CHEMISTRY, 1951, 43 (01): : 158 - 159
  • [45] An Attack Strategy based on Hyperbolic Coordinates
    Yu, Hong
    Liu, Jiahao
    Wang, Zuxi
    [J]. ICBDR 2017: PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON BIG DATA RESEARCH, 2015, : 93 - 97
  • [46] Volume preserving flow and Alexandrov-Fenchel type inequalities in hyperbolic space
    Andrews, Ben
    Chen, Xuzhong
    Wei, Yong
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (07) : 2467 - 2509
  • [47] Isoperimetric type problems and Alexandrov-Fenchel type inequalities in the hyperbolic space
    Wang, Guofang
    Xia, Chao
    [J]. ADVANCES IN MATHEMATICS, 2014, 259 : 532 - 556
  • [48] An Alexandrov-Fenchel-Type Inequality in Hyperbolic Space with an Application to a Penrose Inequality
    de Lima, Levi Lopes
    Girao, Frederico
    [J]. ANNALES HENRI POINCARE, 2016, 17 (04): : 979 - 1002
  • [49] An Alexandrov–Fenchel-Type Inequality in Hyperbolic Space with an Application to a Penrose Inequality
    Levi Lopes de Lima
    Frederico Girão
    [J]. Annales Henri Poincaré, 2016, 17 : 979 - 1002
  • [50] Coordinates of the Midpoint of a Segment in an Extended Hyperbolic Space
    Romakina, Lyudmila N.
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01): : 272 - 282