Path integral quantization of the relativistic Hopfield model

被引:3
|
作者
Belgiorno, F. [1 ,2 ]
Cacciatori, S. L. [3 ,4 ]
Dalla Piazza, F. [5 ]
Doronzo, M. [3 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Piazza Leonardo 32, IT-20133 Milan, Italy
[2] Politecn Milan, Dipartimento Matemat, INdAM GNFM, I-20133 Milan, Italy
[3] Univ Insubria, Dept Sci & High Technol, Via Valleggio 11, IT-22100 Como, Italy
[4] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, IT-20133 Milan, Italy
[5] Univ Roma La Sapienza, Dipartimento Matemat, Piazzale A Moro 2, I-00185 Rome, Italy
关键词
FADDEEV-JACKIW; ANALOG; FIELD;
D O I
10.1103/PhysRevD.93.065020
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The path-integral quantization method is applied to a relativistically covariant version of the Hopfield model, which represents a very interesting mesoscopic framework for the description of the interaction between quantum light and dielectric quantum matter, with particular reference to the context of analogue gravity. In order to take into account the constraints occurring in the model, we adopt the Faddeev-Jackiw approach to constrained quantization in the path-integral formalism. In particular, we demonstrate that the propagator obtained with the Faddeev-Jackiw approach is equivalent to the one which, in the framework of Dirac canonical quantization for constrained systems, can be directly computed as the vacuum expectation value of the time-ordered product of the fields. Our analysis also provides an explicit example of quantization of the electromagnetic field in a covariant gauge and coupled with the polarization field, which is a novel contribution to the literature on the Faddeev-Jackiw procedure.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Path integral quantization of systems with constraints
    Klauder, JR
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 363 - 367
  • [32] Path integral quantization of a spinning particle
    Kowalski-Glikman, Jerzy
    Rosati, Giacomo
    PHYSICAL REVIEW D, 2020, 101 (06)
  • [33] Feynman path integral and Toeplitz quantization
    Charles, L
    HELVETICA PHYSICA ACTA, 1999, 72 (5-6): : 341 - 355
  • [34] Path integral quantization of gauge field
    不详
    PATH INTEGRAL QUANTIZATON AND STOCHASTIC QUANTIZATION, 2000, 165 : 103 - 174
  • [35] PATH-INTEGRAL QUANTIZATION OF SOLITONS
    VERSCHELDE, H
    PHARISEAU, P
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1984, 23 (02): : 181 - 190
  • [36] Path-Integral and BRST Quantization in a Pure Supersymmetric Anyon Model
    E. C. Manavella
    C. E. Repetto
    O. P. Zandron
    International Journal of Theoretical Physics, 1999, 38 : 1837 - 1849
  • [37] Path-integral and BRST quantization in a pure supersymmetric anyon model
    Manavella, EC
    Repetto, CE
    Zandron, OP
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1999, 38 (07) : 1837 - 1849
  • [38] Relativistic path integral and relativistic Hamiltonians in QCD and QED
    Simonov, Yu. A.
    PHYSICAL REVIEW D, 2013, 88 (02):
  • [39] Exact quantisation of the relativistic Hopfield model
    Belgiorno, F.
    Cacciatori, S. L.
    Dalla Piazza, F.
    Doronzo, M.
    ANNALS OF PHYSICS, 2016, 374 : 338 - 365
  • [40] The relativistic Hopfield model with correlated patterns
    Agliari, Elena
    Fachechi, Alberto
    Marullo, Chiara
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (12)