Hadwiger Number of Graphs with Small Chordality

被引:4
|
作者
Golovach, Petr A. [1 ]
Heggernes, Pinar [1 ]
Van 't Hof, Pim [1 ]
Paul, Christophe [2 ]
机构
[1] Univ Bergen, Dept Informat, N-5008 Bergen, Norway
[2] CNRS, LIRMM, Montpellier, France
关键词
D O I
10.1007/978-3-319-12340-0_17
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Hadwiger number of a graph G is the largest integer h such that G has the complete graph K-h as a minor. We show that the problem of determining the Hadwiger number of a graph is NP-hard on co-bipartite graphs, but can be solved in polynomial time on cographs and on bipartite permutation graphs. We also consider a natural generalization of this problem that asks for the largest integer h such that G has a minor with h vertices and diameter at most s. We show that this problem can be solved in polynomial time on AT-free graphs when s >= 2, but is NP-hard on chordal graphs for every fixed s >= 2.
引用
收藏
页码:201 / 213
页数:13
相关论文
共 50 条
  • [1] HADWIGER NUMBER OF GRAPHS WITH SMALL CHORDALITY
    Golovach, Petr A.
    Heggernes, Pinar
    van't Hof, Pim
    Paul, Christophe
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (03) : 1427 - 1451
  • [2] Treewidth for graphs with small chordality
    Bodlaender, HL
    Thilikos, DM
    DISCRETE APPLIED MATHEMATICS, 1997, 79 (1-3) : 45 - 61
  • [3] Hadwiger Number and the Cartesian Product of Graphs
    L. Sunil Chandran
    Alexandr Kostochka
    J. Krishnam Raju
    Graphs and Combinatorics, 2008, 24 : 291 - 301
  • [4] ON THE HADWIGER NUMBER OF INFINITE-GRAPHS
    SEIFTER, N
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 : 207 - 215
  • [5] Hadwiger number and the Cartesian product of graphs
    Chandran, L. Sunil
    Kostochka, Alexandr
    Raju, J. Krishnam
    GRAPHS AND COMBINATORICS, 2008, 24 (04) : 291 - 301
  • [6] A note on the Hadwiger number of circular arc graphs
    Narayanaswamy, N. S.
    Belkale, N.
    Chandran, L. S.
    Sivadasan, N.
    INFORMATION PROCESSING LETTERS, 2007, 104 (01) : 10 - 13
  • [7] LOWER BOUND OF THE HADWIGER NUMBER OF GRAPHS BY THEIR AVERAGE DEGREE
    KOSTOCHKA, AV
    COMBINATORICA, 1984, 4 (04) : 307 - 316
  • [8] THE HADWIGER NUMBER OF INFINITE VERTEX-TRANSITIVE GRAPHS
    THOMASSEN, C
    COMBINATORICA, 1992, 12 (04) : 481 - 491
  • [9] Graphs of low chordality
    Chandran, LS
    Lozin, VV
    Subramanian, CR
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2005, 7 (01): : 25 - 35
  • [10] On hadwiger conjecture for certain families of graphs with restricted number of cycles
    Alarmelmangai, G.
    Anuradha, A.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2020, 112 : 161 - 164